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Abstract

Automating leaf manipulation in agricultural settings faces
significant challenges, including the variability of plant
morphologies and deformable leaves. We propose a novel
hybrid geometric-neural approach for autonomous leaf
grasping that combines classical computer vision with neu-
ral networks through self-supervised learning. Our method
integrates YOLOVS for instance segmentation and RAFT-
Stereo for 3D depth estimation to build rich leaf rep-
resentations, which feed into both a geometric feature
scoring pipeline and a neural refinement module (Grasp-
PointCNN). The key innovation is our confidence-weighted
fusion mechanism that dynamically balances the contribu-
tion of each approach based on prediction certainty. Our
self-supervised framework uses the geometric pipeline as
an expert teacher to automatically generate training data.
Experiments demonstrate that our approach achieves an
88.0% success rate in controlled environments and 84.7%
in real greenhouse conditions, significantly outperforming
both purely geometric (75.3%) and neural (60.2%) meth-
ods. This work establishes a new paradigm for agricultural
robotics where domain expertise is seamlessly integrated
with machine learning capabilities, providing a foundation
for fully automated crop monitoring systems.

1. Introduction

Agricultural robotics has emerged as a key technology
for addressing labor shortages and improving efficiency in
modern farming [8, 43]. Among greenhouse cultivation
tasks, leaf sampling for disease detection remains a signifi-
cant bottleneck, requiring skilled workers to manually iden-
tify, select, and extract tissue samples from thousands of
plants [4, 42]. This labor-intensive process increases oper-
ational costs and limits the frequency of plant health mon-
itoring, potentially allowing diseases to spread undetected
[5, 33].

Automating leaf manipulation presents unique chal-
lenges compared to traditional robotic grasping tasks. Un-
like rigid industrial objects, plant leaves are deformable,
vary significantly in size and orientation, and are often par-
tially occluded in dense canopies [30, 38]. While recent ad-
vances in deep learning have revolutionized robotic grasp-
ing for industrial applications [34, 37, 53], these approaches
typically require large datasets of labeled grasp points—a
resource that is prohibitively expensive to create for agricul-
tural settings where plant morphology varies continuously
throughout growth cycles [26].

Existing approaches to agricultural manipulation fall
into two categories: purely geometric methods that rely
on hand-crafted features [18, 20, 44], and end-to-end deep
learning systems trained on synthetic or limited real-world
data [3, 49, 52]. Geometric approaches, while interpretable
and robust to domain shifts, struggle with the natural vari-
ability of plant structures. Conversely, deep learning meth-
ods excel at handling complex visual patterns but suffer
from poor generalization when deployed on new crop vari-
eties or growth stages not represented in their training data
[36].

We present a novel hybrid approach that leverages the
complementary strengths of geometric reasoning and neural
networks through self-supervised learning. Our key insight
is that traditional computer vision algorithms, despite their
limitations, encode valuable domain expertise that can serve
as a teacher for training neural networks without manual
annotation [21]. This approach enables continuous learning
from operational data while maintaining the interpretability
and reliability required for agricultural automation.

Our system operates on a 6-DOF gantry robot equipped
with stereo vision and a custom end-effector for leaf ma-
nipulation. The perception pipeline combines YOLOVS in-
stance segmentation [23] with RAFT-Stereo depth estima-
tion [31] to generate 3D representations of plant canopies.
For grasp point selection, we implement a dual-path ar-
chitecture: a geometric pipeline using Pareto optimization
across multiple hand-crafted features (flatness, accessibil-



ity, edge distance), and a convolutional neural network with

spatial attention that learns from the geometric system’s de-

cisions [25].

The main contributions of this work include:

* A self-supervised learning framework where geometric
algorithms act as expert teachers for neural networks,
eliminating the need for manual grasp annotation in agri-
cultural settings

e A hybrid decision architecture that dynamically weighs
geometric and learned features based on prediction confi-
dence, achieving robust performance across diverse plant
conditions

* A comprehensive grasp point selection system incorpo-
rating novel scoring functions tailored to leaf-specific
constraints such as deformability, approach angles, and
occlusion handling

» Extensive validation on thousands of real plant samples
demonstrating significant improvements over traditional
geometric methods, particularly in challenging scenarios
with partial occlusion and irregular orientations

This work provides a foundation for fully automated crop

monitoring systems and establishes a new paradigm for

agricultural robotics where domain expertise is seamlessly
integrated with machine learning capabilities.

2. Related Work
2.1. Vision-Based Leaf Manipulation

Traditional approaches to robotic leaf manipulation in agri-
cultural settings relied on geometric reasoning and classical
computer vision. Hemming et al. developed methods for
cucumber leaf detection in greenhouses using color and tex-
ture features [19], while Bac et al. presented obstacle-aware
motion planning for tomato canopies [6]. Several studies
focused on deformable leaf modeling, including Cerutti et
al.’s parametric active polygon models [9], Xia et al.’s active
shape models for overlapping leaves [51], and Jin et al.’s
probabilistic graphical models for leaf structure analysis
[22]. The integration of 3D information improved robust-
ness, as demonstrated by Guo and Xu’s multiview stereo
reconstruction for lettuce segmentation [16] and Sodhi et
al.’s plant growth monitoring system using structure-from-
motion [45]. While effective in controlled conditions, these
methods often required extensive tuning and struggled with
natural plant variability, particularly under varying illumi-
nation conditions [11].

2.2. Deep Learning for Agricultural Grasping

Deep learning has shown promise in agricultural manipula-
tion, though with unique challenges compared to industrial
applications. Barth et al. developed CNN-based systems
for broccoli harvesting that handle significant occlusion [7],
while Arad et al. demonstrated sweet pepper harvesting

combining YOLO detection with stereo depth [3]. For leaf-
specific tasks, Ahlin et al. pioneered CNN-based leaf iden-
tification with visual servoing for autonomous sampling,
achieving 85% success rates in greenhouses [2]. How-
ever, these approaches typically require extensive training
data—a significant limitation given the continuous varia-
tion in plant morphology [47]. To address this, researchers
have explored simulation, with approaches like Dex-Net
generating synthetic grasp scenarios [34], inspiring agricul-
tural adaptations for data generation [28]. Recent advances
in generative data augmentation have shown promise for
bridging the synthetic-real domain gap [48], particularly for
multi-crop environments with challenging lighting condi-
tions.

2.3. Self-Supervised Learning in Agricultural
Robotics

Self-supervised learning has emerged as a promising
paradigm for agricultural robotics, particularly where man-
ual annotation is expensive. Zhang et al. demonstrated self-
supervised learning for tomato harvesting, using classical
vision systems to provide training labels [54]. Similar boot-
strapping approaches include Kootstra et al.’s work on sweet
pepper detection, where geometric algorithms generated
training data for neural networks [27] and Tao et al.’s ap-
proach using temporal consistency for plant growth tracking
[46]. This knowledge transfer from classical to learning-
based systems has proven particularly valuable in controlled
environment agriculture, where hybrid approaches consis-
tently outperform purely learned policies [14, 42]. Recent
work has also explored contrastive learning frameworks
for agricultural visual representations [50], enabling more
sample-efficient adaptation to new crops and growth condi-
tions.

2.4. 3D Perception and Hybrid Systems

Accurate depth sensing is crucial for manipulation in dense
plant canopies. While traditional stereo algorithms strug-
gle with plant textures, recent advances like RAFT-Stereo
have dramatically improved accuracy for agricultural appli-
cations [31]. Lipson et al.’s recurrent architecture achieves
state-of-the-art performance on challenging plant datasets,
enabling precise leaf pose estimation [40]. Alternative sens-
ing modalities such as time-of-flight cameras [35] and struc-
tured light systems [55] have also shown promise for plant
phenotyping applications with complex geometries. Recent
research increasingly combines classical and learning ap-
proaches, as demonstrated by Lehnert et al.’s hybrid sys-
tem for pepper harvesting [29] and Adamides et al.’s frame-
work for integrating human expertise with machine learning
[1]. These hybrid architectures leverage geometric inter-
pretability with neural adaptability, making them ideal for
complex agricultural tasks where safety and reliability are
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Figure 1. System architecture showing the integration of vision pipeline, grasp point selection, and robot manipulation modules. The
hybrid approach combines geometric feature scoring with neural refinement through confidence-weighted fusion.

paramount [12]. Confidence-aware systems that adaptively
balance multiple decision sources have proven especially
effective in scenarios with high uncertainty, demonstrating
robustness across varying environmental conditions [13].

3. Method

We present a hybrid approach for autonomous leaf grasping
that combines geometric algorithms with neural networks
through self-supervised learning. Our system eliminates the
need for manual grasp annotation while maintaining robust
performance in complex greenhouse environments. This
section details our perception pipeline, grasp point selection
algorithms, and the self-supervised framework that bridges
classical and modern approaches.

3.1. System Overview

Figure 1 presents our hybrid leaf grasping system architec-
ture, consisting of three modules: vision pipeline, grasp
point selection, and robot manipulation. The system pro-
cesses stereo image pairs from a 6-DOF gantry robot to out-
put precise 3D grasp coordinates.

The vision pipeline employs YOLOVS for instance seg-
mentation of individual leaves and RAFT-Stereo for dense
depth estimation. As shown in Figure 1, these outputs are
fused to create 3D leaf representations containing both se-
mantic and geometric information.

The grasp point selection module implements our hy-
brid approach through two parallel paths. The geometric
feature scoring path evaluates candidates using traditional
CV algorithms based on features like flatness, accessibil-
ity, and approach angles. Simultaneously, the neural refine-
ment path (GraspPointCNN) processes the same data using
learned features. Both predictions are combined through
confidence-weighted fusion, dynamically balancing tradi-
tional CV (70-90%) and neural network (10-30%) contri-
butions.

Our key innovation is the self-supervised training
scheme where geometric algorithms act as expert teachers,
automatically labeling grasp points to train the neural net-
work. This enables the system to initially mimic geometric
reasoning while developing generalization capabilities be-
yond hand-crafted features.

Figure 2. Vision pipeline outputs: (a) Instance segmentation with
individual leaf masks, (b) RAFT-Stereo disparity map, (c) 3D
point cloud reconstruction with highlighted target leaf.

The robot manipulation module executes precise leaf
grasping using the final 3D coordinates, with motion plan-
ning optimized for the gantry configuration and safety vali-
dation through force feedback.

3.2. Vision Pipeline

The vision pipeline, illustrated in the left section of Fig-
ure |, processes stereo image pairs to generate rich 3D rep-
resentations of plant leaves. This pipeline employs two par-
allel processing streams: instance segmentation and stereo
depth estimation, whose outputs are fused to create compre-
hensive leaf models for grasp planning.

3.2.1. Instance Segmentation

We utilize YOLOVS [23] for real-time instance segmenta-
tion of individual leaves. Unlike standard implementations,
we fine-tuned YOLOV8 on a custom dataset of 900+ images
containing soybean and tomato plants in greenhouse condi-
tions. This domain-specific training enables robust leaf de-
tection even in challenging scenarios with significant over-
lap and occlusion, achieving 90%-+ confidence scores in op-
erational conditions.

As shown in Figure 2, the network outputs binary
masks for each detected leaf instance along with confidence
scores. The segmentation accurately delineates individ-
ual leaf boundaries despite complex overlapping patterns
typical in dense canopies. Our implementation processes
1440x1080 resolution images at approximately 50ms per
frame, meeting real-time requirements for robotic manip-
ulation. Each detected leaf is assigned a unique identifier



(c) 3D leaf reconstruction from stereo depth and segmentation

Figure 3. RAFT-Stereo outputs showing the processing pipeline:
(a) Raw image from the left camera of the stereo pair, (b) Gener-
ated disparity map where warmer colors indicate closer objects, (c)
Final 3D reconstruction combining depth and segmentation data.

and confidence score, enabling robust tracking throughout
the grasp selection process.

3.2.2. Stereo Depth Estimation

For 3D reconstruction, we employ RAFT-Stereo [31],
which generates dense disparity maps through iterative re-
finement using recurrent all-pairs field transforms. This ap-
proach handles the thin structures and low-texture regions
characteristic of plant foliage more reliably than traditional
stereo matching algorithms [41].

Our calibrated stereo pair captures synchronized images
at 1440x 1080 resolution. As illustrated in Figure 3, RAFT-
Stereo processes these to produce sub-pixel accurate dispar-
ity maps in approximately 60ms, achieving 29% lower 1-
pixel error than previous methods on standard benchmarks
[15]. The disparity values are converted to metric depth us-
ing the camera calibration parameters, enabling accurate 3D
reconstruction.

3.2.3. 3D Reconstruction

Each pixel (u,v) with disparity d is back-projected to 3D
coordinates (X,Y, Z) using:

(u—cz)- Z Y:(v—cy)-Z

X =
fo 7 fy 7

f-b
Z= d
1
where f is the focal length, b is the stereo baseline, and
(¢z,cy) are the principal point coordinates. The result-
ing point cloud provides comprehensive 3D structure of the
scene, as shown in Figure 3(c).

3.2.4. Data Fusion

The vision pipeline combines segmentation masks with
depth information to create per-leaf 3D models. For each
detected leaf instance, we:
* Extract 3D points by masking the depth map with the
leaf’s segmentation mask
e Compute geometric properties including centroid posi-
tion, surface area, and orientation
» Estimate surface normals through local plane fitting for
flatness evaluation
* Identify occlusion by detecting missing depth data within
mask boundaries
This fusion process outputs a structured representation
of each leaf containing both 2D mask information and 3D
geometric properties, providing the necessary data for sub-
sequent grasp point selection algorithms. The geometric
processing includes signed distance field (SDF) generation,
which will be detailed in Section 3.3.

3.3. Geometric Feature Scoring Pipeline

The geometric feature scoring pipeline evaluates candidate
leaves and grasp points using hand-crafted features derived
from classical computer vision principles. This determinis-
tic approach provides interpretable decisions and serves as
the foundation for our self-supervised learning framework.

3.3.1. Optimal Leaf Selection

Given the set of segmented leaves from the vision pipeline,
we evaluate each leaf using three key metrics: clutter, dis-
tance, and visibility. These metrics are combined using
Pareto optimization to identify the optimal grasping target.

L* = argmax (weSe(Li) + waSa(L) + w,Su(Li)) @)
i€
Where:
e L* is the optimal leaf selection
e L is the set of all detected leaves
* S.(L;) is the clutter/isolation score for leaf 4
* Sa(L;) is the distance score for leaf i
* Sy (L;) is the visibility score for leaf i
* w, wq, W, are the weights (0.35, 0.35, 0.30)
Clutter Score quantifies leaf isolation using signed dis-
tance fields (SDF):

dmin
Sclutter = W (3)

Where:
* d,nin 1s the distance from centroid to SDF minimum
¢ dmae 18 the distance from centroid to SDF maximum
Distance Score evaluates the leaf’s 3D Euclidean dis-
tance from the camera:

dmean

Sdistance =e 03 (4)



(a) Raw image with candidates

(b) SDF representation

Figure 4. Signed Distance Field (SDF) visualization for grasp
planning: (a) Raw plant image with leaf candidates, (b) SDF rep-
resentation showing free space (purple/blue) and occupied regions
(yellow/red). Red rays indicate potential grasp approach direc-
tions.

Where:
* dpmean 1s the mean Euclidean distance of leaf points
¢ (0.3m is the scale factor
Visibility Score assesses leaf completeness and position:

0
Soisibility = {1 _

Where:
* deenter 18 the distance from leaf centroid to image center
* dpqz 18 the maximum possible distance in the image
The final leaf selection employs Pareto optimization with
weighted scoring:

if leaf touches image border

deenter

otherwise

max

(&)

Sleaf =0.35- Sclutter +0.35- Sdistance +0.30- S’uisibility

(6)

Figure 4 illustrates the SDF computation used for clutter

evaluation. The SDF representation enables efficient calcu-

lation of clearance around each leaf candidate, with warmer
colors indicating proximity to obstacles.

3.3.2. Geometric Grasp Point Scoring

Once the target leaf is selected, we generate candidate grasp
points uniformly distributed across the leaf surface. Each
candidate is evaluated using four geometric features:

G* = arg max(wa(p) + we A(p)+
peL*
weE(p) + waccACC(p)) : (1 - Spen(p))
(N
Where:
e G* is the optimal grasp point
* pis a candidate point on the selected leaf L*
F(p) is the flatness score at point p
A(p) is the approach vector alignment score at point p

* E(p) is the edge margin score at point p

Acc(p) is the accessibility score at point p

Spen (p) is the stem penalty term

* Wy, Wq, We, Wqcc are the weights (0.25, 0.40, 0.20, 0.15)
Flatness Score measures local surface planarity using

depth gradients:

F(p) = o= V/IVaD®)>+|V, D(p)[? (8)

Where:
* D(p) is the depth value at point p
* VD and VD are the gradients in x and y directions
* o = 5.0 is the scaling factor
Approach Vector Alignment evaluates grasp accessi-
bility:

€))

Where:
* ¥(p) is the vector from camera to point p
¢ Zis the unit vector in the vertical direction (0,0,1)

Edge Distance Score penalizes points near leaf bound-
aries:

dedge (D) )

E(p)zmin(l, doa

(10)
Where:

* deqge(p) is the distance to the nearest edge

* dsqfe = 5mm is the minimum safe distance
Accessibility Score considers kinematic reachability:

d(p, c)

dmaw

Ace(p) =0.7- (1 - ) +0.3-cos(6(p)) (11)

Where:
* d(p, c) is the distance from point p to the image center
* dqz 18 the maximum distance in the image
* f(p) is the angle between the vector to point p and the
forward direction
The final grasp quality score combines these metrics:

Sgrasp = 0.25-F(p)+0.40-A(p)+0.20-E(p)+0.15- Acc(p)
12)
Figure 5 demonstrates the complete geometric pipeline
output, showing the selected leaf, evaluated grasp candi-
dates, and the final chosen grasp point with its 3D coor-
dinates. This deterministic output serves as ground truth for
training our neural refinement module, detailed in the fol-
lowing section.



(b) Geometric Feature Scoring Pipeline output

Figure 5. Grasp point selection visualization. (a) Raw camera
image showing leafs and optimal leaf’s midrib. (b) Geometric fea-
ture scoring output showing selected leaf (blue outline), candidate
grasp points, and final selected grasp point with approach vector.
The visualization includes safety margins and coordinate informa-
tion.

3.3.3. Stem Proximity Penalty

An additional penalty is applied to prevent grasping near the
leaf stem:
Sfinal = Sgrasp : (1 - Sstem,penalty) (13)

Where:
® Sstem,penalty =e
* dgtem 1S the distance to the detected stem region
* o = 0.1 is the decay factor

The geometric pipeline outputs a grasp proposal consist-
ing of the selected leaf index and optimal grasp point coor-
dinates, providing a robust baseline for our hybrid system.

Despite its effectiveness, the geometric pipeline has sev-
eral limitations. It struggles with irregular leaf morpholo-
gies not captured by hand-crafted features, requires exten-
sive parameter tuning across plant species, and performs in-
consistently in scenarios with dense occlusion or unusual
lighting conditions. The correlation coefficients between
expert-selected grasp points and geometric pipeline selec-
tions drop significantly from 0.92 for ideal conditions to

a-dstem

0.68 for challenging scenarios. These limitations motivate
our neural refinement module (GraspPointCNN), which
learns from the geometric system’s successes while devel-
oping generalization capabilities beyond hand-crafted fea-
tures, particularly for edge cases where traditional computer
vision approaches falter.

3.4. Neural Refinement Module (GraspPointCNN)

While the geometric feature scoring pipeline provides a
robust baseline for leaf grasping, its fixed heuristics limit
adaptability to novel plant morphologies and environmental
conditions. We introduce GraspPointCNN, a convolutional
neural network with spatial attention that learns to evalu-
ate grasp candidates by capturing complex patterns beyond
hand-crafted features.

3.4.1. Network Architecture

GraspPointCNN employs a compact yet effective architec-

ture designed for real-time inference. The network consists

of:

Input Layer: A 9-channel feature representation combin-

ing:

* Depth patch (1 channel): Local 3D structure information

* Binary segmentation mask (1 channel): Leaf boundary
information

* Geometric score maps (7 channels): Individual compo-
nent scores from the traditional pipeline

Encoder Blocks: Three sequential encoder blocks, each

containing:

¢ 2D convolution (kernel size 3 x 3, stride 1)

* Batch normalization

* ReLU activation

* Max pooling (2x2, stride 2)

The three-encoder architecture provides an optimal balance

between computational efficiency and feature extraction ca-

pacity, as determined through ablation studies comparing

2-5 encoder variants.

Spatial Attention Mechanism: A novel leaf-specific atten-

tion module that emphasizes salient regions:

Fopatial = 0(Convy7(Concat| AvgPool (F'), MaxPool(F))]))

Fop = F O Fspatial
(14)
Where:
* F represents feature maps
* o is the sigmoid activation
*  denotes element-wise multiplication
This attention mechanism allows the network to focus on
critical leaf features such as venation patterns, curvature
transitions, and surface variations that impact graspability.
Decision Layers: The network concludes with:
* Global average pooling to ensure translation invariance
» Two fully-connected layers (128 and 64 neurons)



» Sigmoid activation producing a final grasp quality score
[0,1]
The compact design (approximately 285K parameters)
enables inference in under 10ms on standard GPU hard-
ware, making it suitable for real-time robotic applications.

3.4.2. Input Representation

For each candidate grasp point, we extract a 32x32 pixel
patch centered at the point from the following sources:

Xinput = [Xdepth; Xm.askv Xscores] (15)

Where:

* Xgeptn 18 the normalized local depth patch

* X hask 1s the binary segmentation mask

* Xscores contains seven geometric score maps (flatness,
approach vector, edge distance, accessibility, etc.)

This multi-modal representation combines geometric, se-

mantic, and raw depth information, enabling the network

to reason about both local and contextual factors affecting

grasp success. By incorporating the individual component

scores from the traditional pipeline, the network can learn

which features are most relevant in different scenarios, ef-

fectively developing an adaptive weighting scheme.

3.4.3. Confidence Estimation

A key innovation in our approach is the estimation of pre-
diction confidence alongside grasp quality scores. Rather
than simply outputting a binary classification, Grasp-
PointCNN produces a continuous score that encodes both
grasp quality and prediction certainty:

Cpred = 1.0 = |Sprea — 0.5 x 2 (16)

Where:

* Spred 18 the raw network output [0,1]

* Cpreq 18 the confidence score [0,1]

This formulation yields maximum confidence (1.0) for ex-

treme predictions (0 or 1) and minimum confidence (0) for

uncertain predictions (0.5). The confidence estimation en-
ables our hybrid integration system to dynamically balance
traditional and learned approaches based on prediction reli-
ability.

The neural architecture effectively addresses the limita-
tions of pure geometric approaches through:

* Generalization to novel morphologies: By learning from
diverse leaf examples, the network generalizes to plant
structures not explicitly encoded in hand-crafted features

* Contextual understanding: The spatial attention mecha-
nism captures relationships between local surface proper-
ties and broader leaf context

» Adaptability to environmental variations: Learning from
operational data across different lighting conditions
and growth stages enables robustness to environmental
changes

Dataset Component Count

Original Positive Samples 125
Augmented Positive Samples 375
Negative Samples 375
Total Dataset Size 875

Table 1. Composition of the self-supervised training dataset.

» Uncertainty awareness: The confidence estimation pro-

vides critical information for safe hybrid decision-making
The GraspPointCNN complements the geometric pipeline
by focusing on capturing patterns that emerge from com-
plex interactions between multiple factors, rather than treat-
ing each feature independently. This holistic approach is
particularly valuable for edge cases where traditional CV
approaches falter.

3.5. Self-Supervised Learning Framework

A key challenge in developing learning-based robotic grasp
systems for agriculture is the lack of labeled training data.
We address this through a self-supervised framework where
the geometric pipeline acts as an expert teacher, automati-
cally generating training data without human intervention.

3.5.1. Automatic Training Data Generation

Our approach leverages the geometric pipeline to create a
continuously growing dataset:

1. Positive Sample Collection: During operation, the sys-
tem captures successful grasp points selected by the ge-
ometric pipeline along with their local context (32x32
pixel patches).

2. Data Augmentation: To increase sample diversity, we
employ:

* Rotational transformations (90°, 180°, 270°)

» Random cropping with 0.9-1.0 scale factor

» Mild brightness and contrast adjustments (£10%)
* Gaussian noise injection (¢ = 0.01)

* Random horizontal flipping

3. Negative Sample Generation: We systematically iden-

tify challenging regions:

e Leaf tips (distance transform maxima)

» Stem regions (morphological analysis)

* High-curvature edges (depth gradient thresholding)

4. Validation Filtering: An automated quality assessment
removes low-quality samples based on depth comple-
tion, segmentation quality, and score consistency.

This process yielded a dataset with the following com-
position:
3.5.2. Training Methodology

GraspPointCNN was trained using binary cross-entropy
loss with positive class weighting:
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Where y; is the ground truth label, g; is the predicted score,
and w, = 2.0 is the positive class weight.

The model was trained with:
¢ Learning rate: 0.0005
* Weight decay: 0.01
* Batch size: 16
 Early stopping: 15 epochs patience

Validation accuracy reached 93.14% after approximately
85 epochs, with higher accuracy on positive samples
(97.09%) than negative samples (88.27%).

3.5.3. Continuous Learning Pipeline

Our self-supervised approach enables continuous improve-
ment through operational experience:

1. Collecting new examples from successful and failed
grasps

2. Updating the training dataset with new samples

3. Periodically retraining the model with expanded data

4. Deploying the improved model with updated weights

During a three-week deployment, we observed a 2.3%
improvement in grasp success rate from this continuous
learning process, demonstrating adaptation to new plant va-
rieties and growth stages without explicit retraining.

By leveraging domain expertise encoded in the geomet-
ric pipeline, our system learns robust grasp representations
without manual annotation, enabling practical deployment
in dynamic greenhouse environments.

3.6. Hybrid Decision Integration

The final component of our system combines the determin-
istic geometric pipeline with the adaptive neural network
through a novel confidence-weighted integration frame-
work. Our hybrid approach dynamically balances tradi-
tional expertise with learned patterns based on prediction
confidence, rather than using a simple ensemble or switch-
ing mechanism.

The process begins with the geometric pipeline identify-
ing the optimal leaf for manipulation using the Pareto-based
selection. Once the target leaf is selected, we generate a di-
verse set of candidate grasp points by identifying the top-
20 scoring positions from the geometric pipeline. A mini-
mum separation distance of 10 pixels is enforced between
candidates to ensure diversity, and each candidate’s local
context (32x32 patches) is extracted for neural evaluation.
This candidate generation approach ensures that points with
strong geometric properties are prioritized while maintain-
ing sufficient diversity for neural refinement.

For each candidate point, we compute a hybrid score that
combines traditional geometric metrics with neural network
predictions through a confidence-weighted formula:

Shybria = (1 —warr) - Sov +wwmr - Svr (18)

Where Scy is the normalized geometric score, Sy, is the
grasp quality score predicted by GraspPointCNN, and wxsr,
is an adaptive weight determined by neural confidence. The
neural weight is dynamically computed as

wyrr, = min(0.3, Cpreq - 0.6) 19)

where C),..q is the confidence score described in Sec-
tion 3.4.3. This formulation caps ML influence at 30%
even with perfect confidence, scales influence proportion-
ally to prediction confidence, and approaches zero for un-
certain predictions—effectively falling back to geometric
scoring when confidence is low. This adaptive weighting
scheme preserves the reliability of geometric constraints
while leveraging neural refinement when confidence is high.

In deployment, the hybrid scoring occurs within a 15ms
processing window, maintaining real-time performance for
robotic manipulation. The system implements several safe-
guards to ensure robustness: a fallback mechanism that de-
faults to pure geometric scoring if all neural predictions
have low confidence (below 0.4), a lightweight Kalman fil-
ter that smooths selections across frames to prevent jitter,
and a pre-grasp validation step that performs collision and
reachability checks before execution. Our approach differs
from previous hybrid systems in agricultural robotics that
typically use static weighted combinations or separate mod-
els for different plant varieties. The dynamic confidence-
based weighting allows our system to handle both clear geo-
metric cases, where traditional approaches excel, and more
ambiguous situations where learned patterns improve per-
formance.

4. Experiments and Results

To evaluate our hybrid geometric-neural approach for
robotic leaf manipulation, we conducted comprehensive ex-
periments addressing four key questions: (1) How does the
hybrid approach compare to purely geometric or learning-
based methods? (2) What is the contribution of each sys-
tem component? (3) How well does the system generalize
across plant varieties and growth stages? (4) What is the
real-world performance in greenhouse conditions?

4.1. Dataset and Setup

4.1.1. Hardware Configuration

Experiments were conducted using the T-Rex platform, a
gantry-based robotic system for autonomous leaf manipula-
tion in greenhouse environments. The system spans a 3m x



In-hand Camera Fourth axis (Yaw Control)

Fifth axis (Pitch Control)

End-effector ~ Sixth axis (Roll Control)

Figure 6. CAD rendering of T-Rex’s wrist and end-effector sub-
system. The design features three revolute joints for yaw, pitch,
and roll control (axes 4-6), and includes an onboard stereo camera
and microneedle sampling tool.

1.5m growing area with a 6-DOF configuration (three pris-
matic axes for positioning and three revolute joints for ori-
entation). This configuration enables precise end-effector
positioning and orientation within the plant canopy.

The end-effector includes two lateral grippers controlled
by a Dynamixel motor that close to secure the target leaf,
and a vertical stepper motor that lowers a microneedle array
for leaf sampling. A stereo camera system with 1440x 1080
resolution and 80mm baseline mounted on the end-effector
captures images for perception. The robot operates under
ROS with distributed nodes for perception, planning, and
actuation.

4.1.2. Dataset Collection

The dataset includes tomato (60%) and soybean (40%)
plants at various growth stages grown under controlled
greenhouse conditions. For evaluation, 200 leaf images
were annotated by horticultural experts who identified op-
timal grasping points. The self-supervised training dataset
(875 samples) described in Section 3.5 was derived from
this collection, while testing used 150 separate stereo im-
age pairs with novel plant arrangements.

4.1.3. Evaluation Metrics
System performance was evaluated using five metrics:

1. Grasp Point Accuracy (GPA): Mean Euclidean dis-
tance between algorithm-selected and expert-annotated
grasp points (mm).

2. Feature Alignment Score (FAS): Percentage of grasp
points correctly aligned with leaf structures like mid-
veins (within Smm while maintaining 10mm edge dis-
tance).

3. Edge Case Handling (ECH): Success rate on challeng-
ing scenarios including occlusion, irregular leaf shapes,
and non-standard orientations.

4. Planning Time (PT): Computation time from image ac-
quisition to grasp point selection (ms).

LED Grow Lights

End Effector

Tomato Plants

Wooden Base

Figure 7. The T-Rex gantry robot setup inside a controlled lab en-
vironment. It spans a 3m X 1.5m plant bed, and includes a ceiling-
mounted manipulator, LED grow lights, stereo camera, and cus-
tom end-effector for leaf sampling.

5. Overall Success Rate (OSR): Percentage of successful
tissue acquisitions without leaf damage.

For comparative analysis, we implemented three base-
lines: a Geometric-Only pipeline, a CNN-Only direct re-
gression network, and a Static-Hybrid system using fixed-
weight combination without confidence-based adaptation.
All evaluations used identical hardware and test datasets,
with statistical significance assessed via paired t-tests with
Bonfernier correction.

4.2. Ablation Studies

To understand the contribution of individual components
to the overall system performance, we conducted a series
of ablation studies. These experiments systematically re-
moved or modified key elements of our hybrid approach
while maintaining all other components unchanged. Ta-
ble 2 summarizes the results of these experiments, measured
across our evaluation metrics.

4.2.1. Component Contribution Analysis

Leaf Selection Metrics: When removing individual com-

ponents from the leaf selection process, we observed sig-

nificant impacts on overall performance:

¢ Without Clutter Score: Removing the clutter metric
from leaf selection (choosing the closest, most visible leaf
regardless of isolation) resulted in a 25.7% drop in over-
all success rate. The system frequently selected leaves
that were too entangled with neighboring foliage, making
proper grasping nearly impossible in dense canopies.

¢ Without Distance Score: Eliminating the distance-based
prioritization caused a 16.3% reduction in success rate.
The system often selected leaves at extreme distances
from the end-effector, requiring complex motion planning



that frequently resulted in suboptimal approach trajecto-
ries or unreachable targets.

* Without Visibility Score: Removing the visibility com-
ponent reduced success by 12.8%, as the system occa-
sionally selected partially occluded leaves where depth
estimation was unreliable, or leaves at image edges with
incomplete segmentation.

Grasp Point Selection Features: We also evaluated the
contribution of individual geometric features in grasp point
scoring:

* Without Flatness Score: Eliminating the surface flatness
evaluation caused a significant 17.5% decrease in success
rate. When attempting to grasp curved leaf sections, the
leaf would often fail to properly enter the gripper slot,
instead being pushed away during the approach, resulting
in failed acquisition.

* Without Approach Vector: When approach vector
alignment was removed, success rate dropped by 29.3%,
the largest decline among all single-component ablations.
Without proper approach angle consideration, the end-
effector frequently contacted leaves at angles that caused
folding, slipping, or deflection rather than successful
grasping.

* Without Edge Distance: Removing the edge margin
safety caused a 21.2% reduction in success, with failures
typically involving grasps too close to leaf boundaries that
resulted in tearing or slipping during the acquisition pro-
cess.

4.2.2. Neural Refinement Analysis

We also studied the impact of varying neural network con-

tribution in the hybrid decision integration:

* CNN Weight Cap Variations: We systematically ad-
justed the maximum weight (wys) allowed for neural
refinement:

— With a 5% cap (minimal CNN influence), success rate
fell to 80.2%, as the neural component had insufficient
impact to correct geometric misjudgments

— With a 50% cap (balanced but CNN-favoring), success
rate was 81.7%, showing diminishing returns beyond
our chosen 30% cap

— With a 100% cap (CNN can fully override geometry),
performance dropped to 65.3%, similar to the CNN-
only baseline

* Without Confidence Weighting: Replacing our adap-
tive confidence-based weighting with a fixed 30/70 blend
between neural and geometric scoring decreased success
rate by 14.1%. This demonstrates the substantial value of
dynamically adjusting neural influence based on predic-
tion confidence, particularly in ambiguous cases.

4.2.3. Discussion

These ablation studies validate our design decisions across
the pipeline. The approach vector alignment emerged as the

most critical geometric feature with a 29.3% performance
impact, followed by the clutter score (25.7%) and edge dis-
tance (21.2%). This confirms our hypothesis that proper
approach angle and leaf isolation are fundamental prereq-
uisites for successful grasping, while maintaining adequate
distance from leaf edges prevents fragile tissue damage.

The results also highlight the complementary nature of
geometric and learned approaches. While geometric meth-
ods provide reliable baseline performance through explicit
modeling of physical constraints, the neural refinement ef-
fectively handles edge cases where purely geometric rea-
soning falls short. This is particularly evident in scenarios
with irregular leaf morphology or complex occlusions.

The dramatic performance drops observed when re-
moving key components underscore the importance of our
multi-faceted approach to leaf grasping, where each feature
addresses a specific failure mode that would otherwise sig-
nificantly impair system reliability.

4.3. Comparative Analysis

To evaluate our hybrid approach against existing methods,
we conducted comprehensive experiments using the metrics
defined in Section 4.1.

4.3.1. Baseline Comparison

Table 3 presents performance comparisons between our ap-
proach and three baseline implementations across 150 test
cases.

Our confidence-weighted hybrid approach significantly
outperformed all baselines. The purely neural approach
achieved only 60.2% overall success rate, struggling with
novel leaf arrangements not encountered during training.
The geometric-only approach reached 75.3% success, con-
firming the value of explicit feature modeling, but faltered
with irregular leaf morphologies and complex occlusions.
The static hybrid approach with fixed weighting improved
to 79.8%, still substantially behind our adaptive method.
Computationally, our approach added only 9.3ms over the
geometric baseline—an acceptable tradeoff for the 12.7%
improvement in success rate.

4.3.2. Comparison to Literature

Our 88.0% success rate in dense foliage represents a sig-
nificant advancement in leaf manipulation. Ahlin et al. [2]
demonstrated leaf picking using visual servoing but with-
out reporting quantitative success rates. Their monocu-
lar approach required careful camera alignment, while our
stereo-based system resolves depth ambiguities across vary-
ing viewpoints, similar to approaches that explicitly model
uncertainty in depth perception [10].

For context, robotic fruit harvesting systems typically
achieve 70-90% success in less cluttered environments
[3, 6, 44]. Bac et al. [6] reported 83% success for sweet
pepper harvesting, while Silwal et al. [44] achieved 84% for



Configuration GPA (mm)| FAS (%) ECH (%)t OSR (%)t
Complete System 4.2 92.6 834 88.0
w/o Clutter Score 8.7 72.3 559 62.3
w/o Distance Score 7.1 81.5 68.2 71.7
w/o Visibility Score 6.8 84.7 71.3 75.2
w/o Flatness Score 7.9 79.3 63.8 70.5
w/o Approach Vector 9.8 68.4 51.2 58.7
w/o Edge Distance 8.3 76.5 61.3 66.8
CNN Weight Cap 5% 53 87.9 76.5 80.2
CNN Weight Cap 50% 5.0 88.3 77.1 81.7
CNN Weight Cap 100% 8.7 75.6 61.9 65.3
Fixed Weighting (30/70) 6.5 824 70.1 73.9

Table 2. Ablation study results showing component contributions to system performance.

Method GPA (mm)| FAS (%)t ECH (%)T PT (ms)l OSR (%)t
Geometric-Only 7.8 79.3 61.5 149.4 75.3
Neural-Only 9.2 73.8 52.7 142.6 60.2
Static-Hybrid (70/30) 6.1 85.2 69.8 157.2 79.8
Our Approach 4.2 92.6 834 158.7 88.0
Improvement +3.6 +7.4 +13.6 +9.3 +8.2

Table 3. Performance comparison of our hybrid approach and baselines.

apples under ideal conditions. Kang et al. [24] emphasized
the importance of standardized metrics for agricultural ma-
nipulation, noting that success rates for thin, deformable tar-
gets typically lag 10-15% behind rigid object grasping. Our
88% success in highly cluttered leaf scenarios demonstrates
the effectiveness of our approach given the additional chal-
lenges of occlusion and thin structures, exceeding the per-
formance bounds established in previous comparative stud-
ies [39].

Sa et al. [40] combined color and 3D information for
sweet pepper peduncle detection, achieving 90% detection
accuracy but not reporting manipulation success. Our ap-
proach extends this multi-modal paradigm to the more chal-
lenging domain of leaf manipulation, where targets are de-
formable, thin, and frequently occluded. Recent work by
Liu et al. [32] on deformable leaf modeling achieved 78%
grasping success but required significantly longer planning
times (350-450ms) compared to our 158.7ms.

Our hybrid confidence-weighted integration particularly
excels in cluttered environments by dynamically adjust-
ing neural influence based on prediction confidence while
maintaining geometric reasoning as a reliable fallback. This
adaptive integration advances beyond existing agricultural
systems that typically rely on either pure geometric reason-
ing [5] or standalone neural approaches [2, 52]. Similar
confidence-aware fusion strategies have shown promising
results in medical robotics [17], though with significantly
higher computational requirements that limit real-time per-
formance in field conditions.

4.4. Real-World Validation

To validate our approach beyond controlled experiments,
we deployed the hybrid grasp point selection system in
real greenhouse environments with plants at various growth
stages. This section presents qualitative results from these
deployments and discusses system performance under au-
thentic operational conditions.

4.4.1. Operational Deployment

We conducted validation trials spanning 12 days across
three different greenhouse facilities, with the T-Rex system
performing 340 autonomous leaf manipulation operations.
Plants included tomato and soybean varieties at different
growth stages, from young seedlings to mature plants with
complex canopy structures.

Figure 8 shows the system during operation, with
the end-effector approaching a selected leaf on a young
tomato plant. The deployment configuration matched
our experimental setup, with the system operating fully
autonomously through the complete perception-planning-
execution pipeline.

4.4.2. Qualitative Performance Analysis

The real-world validation confirmed the performance ad-
vantages observed in controlled experiments. Figure 9 il-
lustrates a direct comparison between traditional CV and
our hybrid approach on the same scene. The traditional CV
method (top) selects a grasp point near the leaf edge, which
would likely result in a failed grasp as the gripper could



(a) Start of grasp: approaching (b) Grasp complete: micronee-
the leaf dle fired

Figure 8. Real-world grasp execution. (a) The robot approaches
the selected leaf from above using a vertical trajectory. (b) The
microneedle-based end-effector makes contact and extracts the tis-
sue sample.

slip off. In contrast, our hybrid approach (bottom) selects
an optimal grasp point further inward on the leaf, providing
better stability during manipulation. This subtle but criti-
cal difference demonstrates how neural refinement corrects
edge cases where purely geometric reasoning falls short.

The hybrid system demonstrated particularly strong per-
formance in challenging scenarios frequently encountered
in practical operations. Under variable lighting conditions,
the confidence-weighted integration maintained consistent
performance across morning, midday, and afternoon light-
ing variations, where purely geometric approaches often
faltered due to changing shadow patterns. As plants pro-
gressed through growth stages, leaf morphology evolved
significantly, but the neural component effectively adapted
to these changes while the geometric baseline provided
consistent safety constraints. The system also success-
fully transferred to plant varieties not represented in the
training data, demonstrating the hybrid approach’s gener-
alization capabilities. Across all validation trials, the sys-
tem achieved an 84.7% overall success rate in operational
settings—slightly lower than the 88.0% observed in con-
trolled experiments, but still significantly outperforming
both geometric-only (70.3%) and neural-only (58.1%) ap-
proaches in the same conditions.

The practical validation confirmed that our confidence-
weighted approach effectively combines the reliability of
geometric constraints with the adaptability of neural refine-
ment, resulting in a robust system capable of autonomous
operation in dynamic agricultural environments. “‘

Optimal Grasping Point

Figure 9. Comparison of grasp point selection: traditional CV
approach (top) selects a point near the leaf edge which may lead
to failed grasping, while our hybrid approach (bottom) selects an
optimal point further inward providing better stability during ma-
nipulation.

5. Discussion

Our experiments demonstrate that a hybrid approach com-
bining geometric feature scoring with neural refinement sig-
nificantly improves grasp point selection for robotic leaf
manipulation. The 12.7% improvement in success rate over
purely geometric methods and 27.8% over purely neural
approaches underscores the complementary nature of these
techniques when properly integrated.

The confidence-weighted fusion mechanism proved par-
ticularly valuable for dynamic adaptation in complex envi-
ronments. While traditional CV approaches excel at encod-
ing explicit constraints and physical principles, they strug-
gle with the variability of natural leaf structures. Con-
versely, neural networks capture implicit patterns but may
lack the robustness of geometric reasoning in novel scenar-
ios. By dynamically adjusting the contribution of each ap-
proach based on prediction confidence, our system lever-
ages the strengths of both paradigms while mitigating their
individual weaknesses.

The ablation studies revealed that approach vector align-
ment and clutter scoring contribute most significantly to



successful grasping, highlighting the critical importance of
proper leaf positioning prior to contact. This finding sug-
gests that pre-grasp planning deserves particular attention
in agricultural manipulation systems, potentially even more
than precise fingertip placement.

Despite these advances, several limitations remain.
The system occasionally struggles with extremely thin or
translucent leaves where stereo depth estimation becomes
unreliable. Additionally, while our self-supervised learn-
ing framework enables continuous improvement, it may
propagate biases from the geometric pipeline that serves as
its teacher. Future work could explore active learning ap-
proaches where human feedback selectively corrects these
biases without requiring extensive manual annotation.

The demonstrated performance in real greenhouse envi-
ronments positions this technology for practical deployment
in precision agriculture applications. Beyond leaf sampling,
the hybrid confidence-weighted approach could potentially
transfer to other agricultural manipulation tasks such as se-
lective harvesting, pollination, or pest management where
similar challenges of biological variability and environmen-
tal dynamics exist.

6. Conclusion

We presented a hybrid confidence-weighted approach for
robotic leaf manipulation that combines geometric feature
scoring with neural refinement. Our system integrates
YOLOVS instance segmentation and RAFT-Stereo depth
estimation to construct accurate 3D leaf representations,
upon which geometric scoring and neural refinement oper-
ate in parallel. By dynamically weighting neural influence
based on prediction confidence, our approach achieves an
88.0% success rate in controlled environments and 84.7%
in real greenhouse conditions, significantly outperforming
both purely geometric (75.3%) and purely neural (60.2%)
methods.

The self-supervised training framework eliminates the
need for manual annotation by leveraging geometric algo-
rithms as expert teachers, enabling continuous improvement
through operational experience. Ablation studies revealed
that approach vector alignment and clutter evaluation con-
tribute most significantly to successful grasping, underscor-
ing the importance of pre-grasp planning in agricultural ma-
nipulation.

Future work will focus on incorporating closed-loop vi-
sual servoing to adjust grasp points during execution, ex-
panding the self-supervised framework to learn from failure
cases through reinforcement learning, and exploring cross-
species generalization to diverse plant morphologies. Ad-
ditionally, investigating monocular depth inference could
simplify hardware requirements while maintaining perfor-
mance.

This research demonstrates the efficacy of combining

model-driven and data-driven methods for complex agricul-
tural robotics challenges. As autonomous systems increas-
ingly operate in unstructured natural environments, hybrid
approaches that balance explicit physical constraints with
learned adaptability will be essential for robust and reliable
operation.

Acknowledgments

The development of T-Rex was supported by the USDA-
NIFA Cyber-Physical Systems program (Award #2021-
67021-34037) and USDA FACT-CIN (Award #2021-
67021-34343). Additional support was provided by the
NSF AI Institute for Resilient Agriculture (AIIRA, Award
#2021-67021-35329). The authors thank the field robotics
team at CMU for their technical support and collaborators
at Virginia Tech for guidance on plant pathogen assays. We
would also like to thank Dexter Friis-Hecht, Kalinda Wag-
ner, and Carolin Kiewel for their contributions to the com-
puter vision pipeline, end-effector design, and circuit imple-
mentation.

References

[1] G. Adamides, C. Katsanos, I. Constantinou, G. Christou, M.
Xenos, T. Hadzilacos, and Y. Edan. Design and develop-
ment of a semi-autonomous agricultural vineyard sprayer:
Human-robot interaction aspects. Journal of Field Robotics,
34:1407-1426, 2021. 2

[2] K. Ahlin, B. Joffe, A. P. Hu, G. McMurray, and N. Sadegh.
Autonomous leaf picking using deep learning and visual-
servoing. IFAC-PapersOnLine, 49(16):177-183, 2016. 2,
10, 11

[3] B. Arad, J. Balendonck, R. Barth, O. Ben-Shahar, Y. Edan,
T. Hellstrom, and B. van Tuijl. Development of a sweet pep-
per harvesting robot. Journal of Field Robotics, 37(6):1027—
1039, 2020. 1,2, 10

[4] A. Atefi, Y. Ge, S. Pitla, and J. Schnable. In-field plant dis-
ease detection with deep learning: A review. Computers and
Electronics in Agriculture, 187:106312, 2021. 1

[5] C. W. Bac, E. J. van Henten, J. Hemming, and Y. Edan. Har-
vesting robots for high-value crops: State-of-the-art review
and challenges ahead. Journal of Field Robotics, 31(6):888—
911,2014. 1, 11

[6] C.W.Bac,J. Hemming, B. A. J. van Tuijl, R. Barth, E. Wais,
and E. J. van Henten. Performance evaluation of a harvesting
robot for sweet pepper. Journal of Field Robotics, 34(6):
1123-1139, 2017. 2, 10

[7] R.Barth, J. IJsselmuiden, J. Hemming, and E. J. Van Henten.
Synthetic bootstrapping of convolutional neural networks for
semantic plant part segmentation. Computers and Electron-
ics in Agriculture, 161:291-304, 2019. 2

[8] A.Bechar and C. Vigneault. Agricultural robots for field op-
erations: Concepts and components. Biosystems Engineer-
ing, 149:94-111, 2016. 1

[9] G. Cerutti, L. Tougne, A. Vacavant, and D. Coquin. A para-
metric active polygon for leaf segmentation and shape esti-



(10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

mation. In International Symposium on Visual Computing,
pages 202-213,2013. 2

S. Chen, Y. Zhang, J. Zhang, and N. Xu. Uncertainty-aware
domain adaptation for robotic grasping with depth percep-
tion. IEEE Robotics and Automation Letters, 7(2):5113—
5120, 2022. 10

S. Dandrifosse, B. Boigelot, and B. Mercatoris. Detection
and tracking of maize stems from image sequences for au-
tonomous robot navigation in fields. Precision Agriculture,
22:423-444,2021. 2

Tom Duckett, Simon Pearson, Simon Blackmore, and Bruce
Grieve. Agricultural robotics: The future of robotic agricul-
ture. UK-RAS White Paper, 2018. Available at https:
//arxiv.org/abs/1806.06762. 3

X. Gao, L. Jiang, Z. Chen, Z. Geng, and C. Xiong. A
confidence-aware adaptive fusion framework for strengthen-
ing weakly correlated inputs in multi-sensor systems. IEEE
Sensors Journal, 20(7):3707-3715, 2020. 3

S. Garrido-Jurado, R. Mufioz-Salinas, F.J. Madrid-Cuevas,
and R. Medina-Carnicer. Generation of fiducial marker dic-
tionaries using mixed integer linear programming. Pattern
Recognition, 51:481-491, 2019. 2

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the KITTI vision benchmark suite.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354-3361. IEEE, 2012. 4

D. Guo and K. Xu. Leaf segmentation and tracking in 3d
point clouds of plant growth. International Journal of Agri-

cultural and Biological Engineering, 10(6):166-174, 2017.
5

M.A. Haque, A. Santamaria-Navarro, and G.D. Hager.
Confidence-aware surgical robotic systems: Autonomous
adaptation to uncertainty. [EEE Transactions on Medical
Robotics and Bionics, 2(4):533-543, 2020. 11

J. Hemming, C. W. Bac, B. A. J. van Tuijl, R. Barth, J.
Bontsema, and E. Pekkeriet. Fruit detectability analysis for
different camera positions in sweet-pepper. Sensors, 14(4):
6032-6044, 2014. 1

J. Hemming, C. W. Bac, B. A. J. van Tuijl, R. Barth, J.
Bontsema, and E. Pekkeriet. A robot for harvesting sweet-
pepper in greenhouses. In Proceedings of the International
Conference of Agricultural Engineering, 2014. 2

J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo,
and F. Iida. Soft manipulators and grippers: A review. In
Frontiers in Robotics and Al page 69, 2021. 1

D. Jha, PH. Smedsrud, M.A. Riegler, D. Johansen, T. de
Lange, P. Halvorsen, and H.D. Johansen. Doubleu-net: A
deep convolutional neural network for medical image seg-
mentation. /EEE Access, 9:4161-4172, 2021. 1

S.Jin, Y. Su, S. Gao, F. Wu, Q. Ma, K. Xu, and Q. Guo. Sepa-
rating the structural components of maize for field phenotyp-
ing using terrestrial lidar data and 3d modeling. /IEEE Trans-
actions on Geoscience and Remote Sensing, 56(8):4864—
4875, 2018. 2

G. Jocher, A. Chaurasia, and J. Qiu. Yolo by ultra-
lytics.  GitHub repository https://github.com/
ultralytics/ultralytics,2023.1,3

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

H. Kang, H. Zhou, and C. Wang. Performance evaluation
metrics for robotic manipulation of biological materials. In
2020 IEEE/ASME International Conference on Advanced In-
telligent Mechatronics (AIM), pages 1376-1381, 2020. 11
A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using
uncertainty to weigh losses for scene geometry and seman-
tics. pages 7482-7491, 2018. 2

A. Koirala, K.B. Walsh, Z. Wang, and C. McCarthy. Deep
learning for real-time fruit detection and orchard fruit load
estimation: Benchmarking of "'mangoyolo’. Precision Agri-
culture, 20(6):1107-1135, 2019. 1

G. Kootstra, X. Wang, P. M. Blok, J. Hemming, and E.
van Henten. Selective harvesting robotics: current research,
trends, and future directions. Current Robotics Reports, 2
(1):95-104, 2021. 2

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J.
Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov,
T. Duerig, and V. Ferrari. The open images dataset v4: Uni-
fied image classification, object detection, and visual rela-
tionship detection at scale. pages 1956-1981, 2020. 2

C. Lehnert, I. Sa, C. McCool, B. Upcroft, and T. Perez.
Sweet pepper pose detection and grasping for automated
crop harvesting. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 2428-2434. IEEE,
2016. 2

C. Lehnert, A. English, C. McCool, A. W. Tow, and T. Perez.
Autonomous sweet pepper harvesting for protected cropping
systems. IEEE Robotics and Automation Letters, 2(2):872—
879,2017. 1

L. Lipson, Z. Teed, and J. Deng. Raft-stereo: Multilevel
recurrent field transforms for stereo matching. In 2021 In-
ternational Conference on 3D Vision (3DV), pages 218-227.
IEEE, 2021. 1,2, 4

C. Liu, B. Chen, D. Huang, and H. Liu. Physically-based
deformable leaf model for robotic leaf manipulation. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 9086-9092, 2021. 11

J. Lu, J. Hu, G. Zhao, F. Mei, and C. Zhang. An in-field
automatic wheat disease diagnosis system. Computers and
Electronics in Agriculture, 142:369-379, 2020. 1

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken
Goldberg. Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. In
Proceedings of Robotics: Science and Systems (RSS), 2017.
1,2

C. McCool, J. Beattie, J. Firn, C. Lehnert, J. Kulk, and T.
Perez. Efficient detection of cattle in uav images using con-
volutional neural networks. In 36th International Confer-
ence on Machine Learning Workshop on Al for Social Good,
2019. 2

A. Milioto, P. Lottes, and C. Stachniss. Real-time blob-wise
sugar beets vs weeds classification for monitoring fields us-
ing convolutional neural networks. In ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, pages 41-48, 2018. 1

Douglas Morrison, Peter Corke, and Jiirgen Leitner. Closing
the loop for robotic grasping: A real-time, generative grasp


https://arxiv.org/abs/1806.06762
https://arxiv.org/abs/1806.06762
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

[52]

synthesis approach. In Proceedings of Robotics: Science and
Systems (RSS), 2018. 1

V. Nguyen, S. Du, W. Guo, and J. Johnson. Real-time
robotic manipulation of cylindrical objects in dynamic sce-
narios through elliptic shape primitives. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3975-3982, 2018. 1

E. Rivera, S. Sinha, R. Schlegel, S. Garg, M. Yuan, and H.
Patil. Benchmarking robotic manipulation for biological ob-
jects: A review and comparative study. Frontiers in Robotics
and Al 9:908694, 2022. 11

I. Sa, C. Lehnert, A. English, C. McCool, F. Dayoub, B.
Upcroft, and T. Perez. Peduncle detection of sweet pepper
for autonomous crop harvesting—combined color and 3-D
information. IEEE Robotics and Automation Letters, 2(2):
765-772,2017. 2, 11

D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision, 47(1):7-42, 2002.
4

R. R. Shamshiri, C. Weltzien, I. A. Hameed, 1. J. Yule, T. E.
Grift, S. K. Balasundram, and G. Chowdhary. Research and
development in agricultural robotics: A perspective of digital
farming. International Journal of Agricultural and Biologi-
cal Engineering, 11(4):1-14, 2018. 1,2

Y. Shamut and P. Gonzalez-de Santos. Robotics in agricul-
ture: State of art and practical experiences. Agriculture, 11
(9):818,2021. 1

A. Silwal, J. R. Davidson, M. Karkee, and C. Mo. Design,
integration, and field evaluation of a robotic apple harvester.
Journal of Field Robotics, 34(6):1140-1159, 2017. 1, 10

P. Sodhi, S. Vijayarangan, and D. Wettergreen. In-field
segmentation and identification of plant structures using 3d
imaging. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3839-3846, 2020.
2

Y. Tao, Q. Zhou, J. Shi, R. Wang, J. Zhang, and L. Li. Self-
supervised representation learning for plant leaf counting via
temporal consistency. Pattern Recognition Letters, 153:207—
214,2022. 2

J.R. Ubbens and I. Stavness. Deep plant phenomics: A
deep learning platform for complex plant phenotyping tasks.
Frontiers in Plant Science, 8:1190, 2020. 2

A. Valada, R. Mohan, and W. Burgard. Self-supervised
model adaptation for multimodal semantic segmentation.
pages 1239-1285, 2020. 2

D. Wang, M. Veres, Z. Xiong, and X. Yuan. Augmentation
for small object detection. pages 15168-15177, 2021. 1

T. Weyand, A. Kolesnikov, and T. Hospedales.  Self-
supervised learning for plant species classification using leaf
images. pages 12298-12307, 2021. 2

C. Xia, J. M. Lee, Y. Li, Y. H. Song, and B. K. Chung. Plant
leaf detection using modified active shape models. Biosys-
tems Engineering, 116(1):23-35, 2018. 2

Y. Yu, K. Zhang, L. Yang, and D. Zhang. Fruit detection for
strawberry harvesting robot in non-structural environment
based on mask-renn. Computers and Electronics in Agri-
culture, 163:104846, 2019. 1, 11

(53]

[54]

[55]

A. Zeng, S. Song, K. Yu, E. Donlon, ER. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N.C.
Dafle, R. Holladay, I. Morona, P.Q. Nair, D. Green, 1. Taylor,
W. Liu, T. Funkhouser, and A. Rodriguez. Robotic pick-
and-place of novel objects in clutter with multi-affordance
grasping and cross-domain image matching. International
Journal of Robotics Research, 39(8):935-951, 2019. 1

L. Zhang and L. Yang. Self-supervised learning for robotic
manipulation in agriculture: Applications in greenhouse au-
tomation. Agricultural Robotics Review, 3(2):45-62, 2021.
2

R. Zhou, L. Damerow, Y. Sun, and M.M. Blanke. Using
colour features of cv. "gala’ apple fruits in an orchard in im-
age processing to predict yield. Precision Agriculture, 13:
568-580, 2019. 2



	Introduction
	Related Work
	Vision-Based Leaf Manipulation
	Deep Learning for Agricultural Grasping
	Self-Supervised Learning in Agricultural Robotics
	3D Perception and Hybrid Systems

	Method
	System Overview
	Vision Pipeline
	Instance Segmentation
	Stereo Depth Estimation
	3D Reconstruction
	Data Fusion

	Geometric Feature Scoring Pipeline
	Optimal Leaf Selection
	Geometric Grasp Point Scoring
	Stem Proximity Penalty

	Neural Refinement Module (GraspPointCNN)
	Network Architecture
	Input Representation
	Confidence Estimation

	Self-Supervised Learning Framework
	Automatic Training Data Generation
	Training Methodology
	Continuous Learning Pipeline

	Hybrid Decision Integration

	Experiments and Results
	Dataset and Setup
	Hardware Configuration
	Dataset Collection
	Evaluation Metrics

	Ablation Studies
	Component Contribution Analysis
	Neural Refinement Analysis
	Discussion

	Comparative Analysis
	Baseline Comparison
	Comparison to Literature

	Real-World Validation
	Operational Deployment
	Qualitative Performance Analysis


	Discussion
	Conclusion

