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Research Experience



Vision-Language-Action Enhanced Robotic Leaf 
Grasping: A Hybrid Foundation Model Approach

Project Overview: 

A real-time vision-language-action system for autonomous robotic leaf manipulation combining foundation models with traditional 
computer vision and deep learning. This hybrid system integrates YOLOv8 for leaf segmentation, RAFT-Stereo for depth estimation, 
LLaVA-1.5-7B for contextual reasoning, and a custom CNN (GraspPointCNN) for grasp point optimization. The architecture features 
self-supervised learning that eliminates manual annotation, and a confidence-weighted decision framework that dynamically balances 
traditional CV algorithms, ML predictions, and VLA reasoning to achieve superior contextual grasping performance.

GitHub Repository: LeafGrasp-Vision-ML

Key Technologies and Skills Used: 

Languages: Python, C++
Frameworks: PyTorch, Transformers, CUDA, OpenCV, Scikit-learn, Numpy, Pandas, Matplotlib, ROS2, MLflow
Foundation Models: LLaVA-1.5-7B, LoRA Fine-tuning, Vision-Language-Action Integration, Multimodal Reasoning
Computer Vision: Instance Segmentation, Depth Estimation, Point Cloud Processing, SDF, 3D Perception
Deep Learning: CNN Architecture Design, Self-Supervised Learning, Model Training & Optimization, Attention Mechanisms
Production Optimization: TensorRT, Custom CUDA Kernels, Docker Containerization, AWS EC2

https://github.com/Srecharan/Leaf-Grasping-Vision-ML


Pipeline:

High-Level System view



YOLOv8 Leaf Instance Segmentation 

Key Details:

● Custom dataset: ~900 images of soybean and tomato plants 
● 68% mAP@[0.5:0.95] for leaf mask generation

High-Level System view

Output from YOLOv8 pipeline: Left: Original RGB image showing tomato plant; Center: Generated 
segmentation masks; Right: visualization with leaf IDs and confidence scores



High-Precision Depth Estimation with RAFT-Stereo

High-Level System view

Reconstructed 3D point cloud enabling precise spatial understanding

Depth Map Geometric capture of leaf surface

Key Technical Details:

● Recurrent GRU refinement (the disparity map)
● 4D correlation volume computation
● Sub-pixel disparity accuracy (<0.5px) on 1080p 

stereo pairs
● Processing speed: ~150ms total pipeline latency on 

RTX 3080



Traditional CV Pipeline: Geometric Grasp Point Selection

High-Level System view

Original camera view with leaf midrib 



Traditional CV Pipeline: Geometric Grasp Point Selection

High-Level System view

Segmented leaves with optimal leaf & grasp point visualization

Optimal Leaf Selection (Pareto Optimization):
- Clutter Score (35%): Leaves that are isolated 
- Distance Score (35%): Leaves that are closer to camera
- Visibility Score (30%): Leaves that are fully visible 

Grasp Point Selection:
- Flatness Score (25%): Flatter regions of the leaf surface
- Approach Vector Score (40%): Approach vector (from the 
camera to the point) is closer to the camera's Z-axis 
- Accessibility (15%): Distance of the grasp point from the 
camera origin and position relative to the center of the image
- Edge Awareness (20%):  Grasp points within leaf boundary



GraspPointCNN: ML-Based Grasp Refinement

High Level System view

GraspPointCNN Architecture

Self-Supervised Learning Pipeline: 
- Input: 9-channel features (32×32) 

- Depth map (1) 
- Binary mask (1) 
- Score maps (7): SDF, approach vector, flatness,   
isolation, distance, accessibility, stem penalty 

- Training Configuration: 
- BCEWithLogitsLoss (pos_weight=2.0)
- Adam (lr=0.0005, weight_decay=0.01) 
- ReduceLROnPlateau scheduler 
- Early stopping (patience=15) 
- Data augmentation: 90°,180°,270° rotations



Hybrid Decision Integration: Combining CV & ML

High-Level System view

Hybrid CV-ML grasp point selection: Left - Original camera view with leaf midrib ; Right - Segmented leaves with grasp point visualization
 



Traditional CV vs Hybrid Decision System

Hybrid CV-ML grasp point selectionTraditional CV grasp point selection

Grasping at the leaf tip often fails as the REX robot struggles to secure 
it, leading to missed grasps or leaf displacement. The hybrid grasp 
point selection method outperforms traditional CV, achieving a 4.66% 
improvement over 150 test cases.



REX Robot Integration for Leaf Grasping

High-Level System view

(1) Robot capturing image (2) Robot grasping the leaf

(1)

(2)



Professional Experience



Real-time Hand Gesture Recognition for 
AR Interaction

Project Overview: 

A comprehensive hand tracking and gesture recognition system built for augmented reality applications in automotive training. This 
system combines advanced computer vision techniques with deep learning to enable intuitive interaction with virtual HVAC 
components. The architecture integrates Extended Kalman Filtering for precise 3D hand tracking (<7.5mm accuracy), geometric 
analysis for static gesture recognition (97% accuracy), and a custom GRU neural network for dynamic gesture detection (<30ms 
latency). Features a Python backend for processing and a Unity frontend for visualization, connected via WebSockets for real-time, 
low-latency performance at 30+ FPS with optimized ONNX models.

GitHub Repository: VirtuHand

Key Technologies and Skills Used: 

Languages & Frameworks: Python, PyTorch, ONNX, scikit-learn, MediaPipe, Websockets, OpenCV, NumPy
Machine Learning: 3D Tracking, Landmark Detection, Depth Sensing, Geometric Analysis, Kalman Filtering
Deep Learning: Recurrent Neural Networks (GRU), Model Optimization (ONNX), Inference (Unity Barracuda)
Augmented Reality (AR): Unity Development, 3D Interaction Design

https://github.com/Srecharan/VirtuHand.git


Pipeline:

System Architecture and Data Flow



Hand Detection and Landmark Extraction with MediaPipe

Uses Google's MediaPipe Hands library to detect hand presence and location in the RGB image
Detected hand landmarks overlaid on the 

original image in real-time

System Architecture and Data Flow



Neural Network Optimization with ONNX

Two-stage ONNX pipeline

To improve performance and reduce reliance on external libraries, an 
experimental pipeline was developed using ONNX (Open Neural Network 
Exchange) models for hand detection and landmark extraction. This approach 
leverages the Unity Barracuda engine for GPU-accelerated inference.

1. Performance Optimization
○ FP16 quantization reducing model size by 50%
○ 33% faster inference compared to MediaPipe

System Architecture and Data Flow



3D Hand Tracking with Extended Kalman Filter

System Architecture and Data Flow

Multi-stage depth filtering for 3D hand tracking

(1)Real-time hand landmark detection &
(2) Visualization of depth map using Filter
 

(1)

(2)

● Combines MediaPipe landmarks 
with RealSense depth data and 
applies Extended Kalman Filtering to 
achieve smooth 3D tracking at 30Hz, 
with robustness to occlusions and 
jitter reduction. 

● Enables precise velocity estimation 
and maintains tracking during fast 
hand movements



Static Gesture Recognition 

System Architecture and Data Flow

Real-time detection of OPEN_PALM, GRAB, PINCH, and POINT gestures

Gesture Description Detection Logic

Open Palm All fingers extended, hand open. All fingertips are further from wrist than their corresponding base joints. Thumb is extended.

Pinch Thumb and index finger close together. Distance between thumb tip and index fingertip below threshold with one finger near thumb

Grab Fingers curled inwards towards the palm. All fingertips are closer to wrist than their corresponding base joints. Thumb is also curled.

Point Index finger extended, others closed. Index fingertip is extended  (from wrist than its base). All other fingertips are curled



Dynamic Gesture Recognition 

GRU Architecture Diagram

System Architecture and Data Flow

● A GRU network is a type of recurrent neural network (RNN) that is well-suited 
for processing sequential data, such as the time series of hand landmark 
positions.

● The GRU model was trained on a custom dataset of dynamic gestures.
● Input: The model takes a sequence of 30 frames of hand landmark data (21 

landmarks x 3 coordinates = 63 input features).
● Output: The model predicts the probability of each supported dynamic gesture.
● Architecture : Input size is 63, hidden layer is 32 and 2 layers.



Dynamic Gesture Recognition 

Real-time detection of dynamic gestures (SWIPE_RIGHT, SWIPE_LEFT, CIRCLE) using the GRU model and motion pattern analysis



Unity Frontend: Hand Rigging and Interaction

A rigged 3D hand model within the Unity editor

Real-time hand rigging in Unity. The 3D hand model accurately mirrors the user's hand movements and gestures.

System Architecture and Data Flow



Unity Frontend: Real-time AR Implementation & Testing

Sequence demonstrating the virtual flower arrangement demo. The user can grab, move, and place flowers using hand gestures

System Architecture and Data Flow



Multi-Camera Vision System for Automated 
Material Detection and Sorting

Project Overview: 

A real-time computer vision system for enhancing high-value material recovery and worker safety monitoring on industrial conveyor 
belts. This system combines YOLOv5 for precise material detection and segmentation with intelligent background subtraction for motion 
analysis. The architecture features camera-specific region-of-interest (ROI) processing, worker-interaction filtering to minimize false 
positives, and a robust counting mechanism. The system achieved 96.8% mAP@[0.5:0.95] for material detection and 74.5% 
mAP@[0.5:0.95] for worker detection, with <15ms inference latency, enabling real-time monitoring across multiple camera feeds.

GitHub Repository: CVAnnotate

Key Technologies and Skills Used: 

Languages: Python, C++
Frameworks: PyTorch, OpenCV, scikit-learn, NumPy, Pandas
Machine Learning: Model Training, Fine-tuning, Data Augmentation, Model Evaluation (mAP, Precision, Recall)
Computer Vision: Object Detection (YOLOv5), Instance Segmentation (Mask R-CNN), Multi-Camera Systems, Region of Interest 
(ROI) Processing, Background Subtraction (MOG2), Image Processing

https://github.com/Srecharan/CVAnnotate.git


Pipeline

End-to-end pipeline for automated material sorting and worker safety, with parallel processing for offline training and real-time operation



Semi-Automated Data Annotation and Augmentation

Initial Dataset Creation using labelme

Simple Mask R-CNN Architecture Diagram

High-Level System view

1. Initial Dataset: A small initial dataset of ~800 images (200 per material class) was created using a 
combination of manual annotation (with LabelMe) and traditional computer vision techniques 
(Canny edge detection, adaptive thresholding) to generate initial segmentation masks. 

2. Mask R-CNN Fine-tuning: A pre-trained Mask R-CNN model was fine-tuned on this initial dataset, 
significantly improving segmentation accuracy.



Data Augmentation and Dataset Creation

Initial Dataset Creation using labelme

Automated Masked & Segmented images 

Data Augmentation (Object-Background Compositing)

High-Level System view

Automated Segmentation: The fine-tuned 
Mask R-CNN was then used to 
automatically generate segmentation 
masks for a much larger dataset of 
43,000+ images captured from the live 
camera feeds. This drastically reduced 
manual annotation effort.

Data Augmentation: To create a robust 
and diverse training dataset, a 
sophisticated data augmentation strategy 
was employed. Segmented material 
images (generated by the Mask R-CNN 
model) were overlaid onto images of the 
empty conveyor belt bins



Worker Detection Dataset Creation

Raw image from the camera Worker detection using a combination of HSV-based 
color thresholding (for initial detection) and a trained 
YOLOv5 model (for refined bounding box prediction)

A separate dataset was created for 
training the worker detection model. 
To quickly gather initial bounding box 
annotations, a color-based detection 
method was used, targeting the 
bright yellow safety vests commonly 
worn by workers. This initial 
detection was then used to train a 
YOLOv5 model for more robust 
person detection.



Detection Model Training and Performance

Performance: 
● Material Detection Model: 96.8% mAP@[0.5:0.95] 
● Worker Detection Model: 74.5% mAP@[0.5:0.95]



Real-Time Processing System

Real-time material detection and counting. Green boxes indicate detected 
and counted materials within the defined ROI

Real-time detection and counting results from the trained model 

High-Level System view



Real-Time Processing System

Examples of False Positives

Real Time worker position tracking 

High-Level System view

False Positive Filtering:

● Worker Overlap: Detected materials overlapping with 
detected workers are not counted. This prevents 
miscounting worker interactions as materials.

● Cooldown: After counting an object in an ROI, a short 
cooldown prevents immediately recounting the same 
object.



Projects



VLM-Based Tool Recognition System for Industrial Safety 
Applications

Project Overview: 

SafetyVLM is a production-ready system that enhances Vision-Language Models (VLMs) for specialized technical 
domains, with a focus on industrial tool recognition, usage instruction, and safety guidance. While VLMs have 
demonstrated remarkable capabilities in general visual understanding tasks, their application to safety-critical domains 
often lacks domain-specific knowledge and suffers from hallucinations. This project addresses this gap by fine-tuning 
state-of-the-art VLMs (Qwen2.5-VL-7B and Llama-3.2-11B-Vision) with a custom dataset of 8,458 tool images enriched 
with 29,567 safety annotations.

GitHub Repository: VirtuHand

Key Technologies and Skills Used: 

Languages & Frameworks: Python, PyTorch, Transformers, Unsloth, TRL, LangChain, OpenCV, Pandas, NumPy
Machine Learning: PEFT, LoRA, RAG, RLHF, GRPO, LLM-guided Prompt Engineering, Vector Embeddings, Semantic Search
Deep Learning: Multi-modal Learning, Vision+Language Fine-tuning, Quantization, Gradient Checkpointing, Attention Mechanisms
Cloud & Infrastructure: AWS SageMaker, Kubernetes, Docker, MLOps Pipelines, Model Versioning, Distributed Training
APIs & Databases: OpenAI API, Pinecone Vector DB, FAISS, REST APIs, Cloud Storage, Real-time Processing

https://github.com/Srecharan/VirtuHand.git


Motivation

THE PROBLEM: 

● General VLMs struggle with domain-specific applications
● Industrial safety requires accurate, comprehensive guidance
● Hallucinations in safety information are dangerous
● Need specialized models for safety-critical domains

OUR APPROACH:
● Multi-strategy fine-tuning (Vision, Language, Combined)
● RAG pipeline with LangChain + Pinecone
● RLHF using GRPO for alignment
● Comprehensive evaluation framework

DATASET SCALE & DIVERSITY:
● 8,458 images with comprehensive safety annotations
● 29,567 annotations across 17 tool categories

Fig.1 Sample tools from safety dataset: wrenches, pliers, and 
industrial equipment



System Architecture Overview

Fig.3 Complete pipeline architecture: from dataset preparation through evaluation, featuring LangChain orchestration 
and Pinecone vector database for production RAG implementation.



Dataset Creation & Safety Annotation Pipeline

LLM-GUIDED ANNOTATION INNOVATION:

● Automated Safety Metadata Generation: Structured prompts + 
few-shot learning

● Comprehensive Coverage: Function, PPE, hazards, common 
misuses

● Scaling Achievement: Manual → Automated annotation pipeline

Fig.4 Structured prompt used to evaluate VLM performance.
Fig.2 Distribution of 17 industrial tool classes in 

the Tool Safety Dataset.



Model Selection & Fine-tuning Strategy

BASE MODEL SELECTION:

● Qwen-2.5-VL-7B: Strong multimodal performance, efficient inference
● Llama-3.2-11B-Vision: Larger capacity, robust vision understanding

THREE FINE-TUNING STRATEGIES:

● Vision-only (V): Fine-tune vision encoder layers only
● Language-only (L): Fine-tune language model components only
● Vision+Language (VL): Fine-tune both modalities jointly

TECHNICAL IMPLEMENTATION:

● LoRA: Parameter-efficient fine-tuning (r=16, α=16)
● 4-bit Quantization: Memory optimization for 8GB VRAM
● Unsloth Integration: 2x faster training, reduced memory footprint

 Fig.5 LoRA Config for Fine-tuning VLMs using 
Unsloth.



Fine-tuning Results Comparison

Fig.6 Performance comparison of different fine-tuning strategies across multiple evaluation metrics. Vision + Language 
outperforms others in both instruction quality and bounding box accuracy.



LangChain + Pinecone RAG Implementation

THE PROBLEM:

● Hallucinations in safety-critical information are dangerous
● Knowledge gaps in domain-specific applications

RAG SOLUTION:

● LangChain Orchestration: Workflow management + chain 
composition

● Pinecone Vector Database: Cloud-native, scalable vector 
storage

● Sentence Transformers: Semantic embeddings for tool 
safety knowledge

 Fig.7 LangChain orchestration with Pinecone for 
contextual safety retrieval.



RAG Performance Impact

KEY INSIGHTS:

● Dramatic hallucination reduction from 45% to 18%
● Comprehensive safety coverage improved to 89%
● Latency trade-off motivates GRPO alignment approach

Metric Standard VLM RAG-Enhanced Improvement

Hallucination Rate 45% 18% 60% reduction

Safety Info Completeness 62% 89% 43% increase

Technical Accuracy 73% 91% 28% improvement

Inference Latency 120ms 320ms +167% overhead

Table. 1 Quantified Improvements



GRPO: Internalizing RAG Knowledge Without Latency

THE PROBLEM:

● RAG adds 200ms+ inference overhead (retrieval bottleneck)

GRPO SOLUTION:

● Preference Learning: RAG responses = "chosen", Standard = 
"rejected"

● No Reward Model: Direct optimization using preference pairs
● Knowledge Internalization: Model learns RAG behavior 

patterns

 Fig.8 GRPO training using preference pairs to internalize 
RAG knowledge.



GRPO Performance Results: Efficiency Without Compromise

STRATEGIC ADVANTAGE:

● Best of both worlds: Accuracy gains + real-time performance
● Simplified architecture: No vector databases or retrieval APIs
● Cost efficiency: Reduced computational overhead in production

Metric Standard VLM RAG-Enhanced GRPO-Aligned Improvement

Hallucination Rate 45% 18% 23% 79% of RAG gains

Safety Info Completeness 62% 89% 81% 90% of RAG gains

Technical Accuracy 73% 91% 84% 75% of RAG gains

Inference Latency 120ms 320ms 155ms 98% latency reduction

Overall Score 6.2 8.7 8.1 84% of RAG gains

Table. 1 Performance Comparison



Evaluation Framework

TWO-TIER EVALUATION APPROACH:

● Detection Metrics: Precision, Recall, F1, IoU for 
tool identification

● Safety Content Quality: LLM-based assessment of 
information completeness

LLM-AS-A-JUDGE METHODOLOGY:

● OpenAI GPT-4o-mini as expert evaluator
● Multi-dimensional scoring: Tool ID, Function, Safety, 

Misuses (0-10 scale)



Results: Progressive Improvement Through Our Pipeline 

Model Tool Identification Safety Instruction Quality

Basic Detection + 
LLM

Pliers Gripping, bending, and manipulating objects with enhanced leverage and control

Zero-Shot VLM (Qwen) Pliers Cutting and Gripping

Fine-tuned VLM (Qwen) Needle-Nose Pliers Precision gripping, bending, and manipulating small wires and components. Wear safety gloves

RAG-Enhanced Needle-nose pliers Precision gripping, bending, and manipulating small wires and components in tight spaces. Required 
PPE: Safety glasses, work gloves. Primary hazards: Pinch points between handles, sharp wire ends, 

eye injury from flying debris. Common misuses: Using as wrench, applying excessive force on 
hardened materials

GRPO-Optimized Needle-nose pliers Precision gripping and manipulation of small wires and components in confined areas. Safety 
considerations: Use safety glasses and gloves, avoid pinch points, inspect tool condition before use, 

maintain proper grip



DeepTrade AI: Multi-Model Stock 
Prediction with NLP & Automated Trading 

Project Overview: 

An end-to-end automated stock trading system that combines machine learning price prediction with NLP-based sentiment analysis. 
The system features a bidirectional LSTM with attention mechanism and XGBoost ensemble for multi-timeframe price forecasting, 
and integrates FinBERT for real-time sentiment analysis of financial news, Reddit posts, and SEC filings. The architecture employs 
dynamic model weighting, comprehensive risk management controls, and simulated execution through the Tradier API, achieving 
55-65% directional accuracy and a 58.5% win rate in paper trading.

GitHub Repository: DeepTrade-AI

Key Technologies and Skills Used: 

Languages & Frameworks: Python, PyTorch, TensorFlow, CUDA, Scikit-learn, Pandas, NumPy, Hugging Face Transformers
Machine Learning: Gradient Boosting (XGBoost), Feature Engineering, Regression, Time Series Forecasting
Deep Learning: LSTM Networks (Bidirectional, Attention), Model Ensembling, Model Training & Hyperparameter Optimization
Cloud Computing: AWS SageMaker (for distributed model training and hyperparameter optimization)
Natural Language Processing (NLP): FinBERT, Sentiment Analysis, Text Processing, Financial Text Mining

https://github.com/Srecharan/DeepTrade.git


Pipeline:

System Architecture and Data Flow



Multi-Source Sentiment Analysis:

System Architecture and Data Flow Sentiment scores for selected stocks; Positive values indicate positive sentiment, negative 
values indicate negative sentiment, and values near zero indicate neutral sentiment

  Key Details:

● Tokenization: "Converts text data into numerical representations for the FinBERT model."
● 3-class Classification: "Classifies sentiment as positive, negative, or neutral."
● Multi-Source Weighted Integration: Financial News (40%)/Reddit(30%)/SEC(30%)



Feature Engineering:

System Architecture and Data Flow

The prediction models utilize a comprehensive set of 
39 features, encompassing technical indicators, 
long-term trend indicators, and sentiment-derived 
features. This rich feature set provides a holistic view 
of market dynamics, enabling the models to capture 
complex relationships and patterns



LSTM Neural Network:

● Bidirectional LSTM: The network processes the input sequence in both forward and backward 
directions, allowing it to learn from past and future context.

● Multi-Head Attention: This mechanism allows the model to focus on different parts of the input 
sequence that are most relevant for prediction. The model uses 3 attention heads.

● Batch Normalization: Batch normalization layers are used after each LSTM layer to improve 
training stability and speed.

LSTM for Price Prediction

System Architecture and Data Flow

LSTM Model Architecture



XGBoost for Price Prediction

XGBoost Model Architecture

XGBoost Ensemble:

● Gradient boosting with 300 decision trees
● Feature engineering including 39 market indicators
● Min child weight:3, Subsample:0.8, Max depth:8

System Architecture and Data Flow



LSTM-XGBoost Ensemble for Price Prediction

LSTM-XGBoost Ensemble Architecture

The trained ensemble model achieves a directional 
accuracy of 55-65% across multiple timeframes (5min, 
15min, 30min, 1h) and a mean absolute error of 0.3-0.4% 
on normalized returns for multiple stocks.

System Architecture and Data Flow



LSTM-XGBoost Ensemble Model Prediction Results with Examples

Training Convergences

Price Predictions



Automated Trading System: Real-World Implementation

System Architecture and Data Flow

Screenshot of the Tradier paper trading interface, showing successful 
execution of trades  (01/06/2025) 

Trading Strategy Integration:

● Entry conditions: Positive directional accuracy in 5/15/30min 
timeframes.

● Exit conditions: Negative directional forecast

Risk Management Framework:

● Risk per trade: 1% of capital
● Stop-loss: 1.5%, Take-profit: 3%

System Validation:

● Win rate: 58.5% across 9 major stocks
● +0.32% net return 



GenAI for Synthetic Data Augmentation: 
GANs, VAEs & Diffusion

Project Overview: 

A comprehensive generative AI system that combines comparative analysis of three leading architectures with practical validation 
through synthetic data augmentation for computer vision applications. This project implements multiple GAN variants (Vanilla, LSGAN, 
WGAN-GP) from scratch with custom ResBlock architectures, explores VAEs with β-annealing optimization, and investigates diffusion 
models through DDPM and DDIM sampling strategies on the challenging CUB-200-2011 bird dataset. Beyond theoretical comparison, 
the work validates practical utility through a synthetic data augmentation pipeline that improves bird species classification performance. 
WGAN-GP emerged as the strongest performer with 33.07 FID score and proved most effective for data augmentation, achieving 5.1% 
accuracy improvement on full datasets and 15.7% boost in data-scarce scenarios through ResNet-50 validation.

GitHub Repository: GenVision

Key Technologies and Skills Used: 

Languages & Frameworks: Python, PyTorch, TensorFlow, NumPy, OpenCV, scikit-learn, clean-fids, MLflow, Weights & Biases
Deep Learning: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Diffusion Models (DDPM, DDIM), Model 
Training, Hyperparameter Tuning, Loss Functions (Adversarial Loss, Reconstruction Loss, KL Divergence, Gradient Penalty)
Computer Vision: Image Synthesis, Feature Visualization, Image Classification, Data Augmentation, Synthetic Data Generation
Data Science: Dataset Creation, Performance Metrics (FID, Precision, Recall), Data Scarcity Solutions, Augmentation Strategies

https://github.com/Srecharan/GenVision.git


Generative Adversarial Networks (GANs) Architecture

Generator:

● Input: 128-dimensional noise vector (z ~ N(0,1))
● Architecture: Linear projection → Reshape to 

[128×4×4] → Series of ResBlockUp modules with 
BatchNorm and ReLU → Final Conv2D with Tanh

● ResBlockUp: Improves gradient flow and 
increases spatial resolution progressively

● Output: Generated RGB image [3×32×32]

Discriminator:

● Input: RGB image [3×32×32] 
● Architecture:ResBlockDown modules→ Standard 

ResBlocks→ReLU→Global Sum Pooling
● ResBlockDown: Feature extraction with 

downsampling (using DownSampleConv2D)
● Output: Scalar value indicating image authenticity 

(probability or Wasserstein score)



Types of GANs - Vanilla GAN

Vanilla GAN Samples Vanilla GAN Latent Space Interpolations

GAN Variant Loss Function Key Features FID Score

Vanilla GAN Binary Cross-Entropy (BCE) Original GAN formulation. Prone to training instability 
(mode collapse).

104.62



Types of GANs - LS-GAN

LS-GAN Samples LS-GAN Latent Space Interpolations

GAN Variant Loss Function Key Features FID Score

LSGAN Least Squares Loss (MSE) Uses Mean Squared Error instead of BCE. More stable 
training than Vanilla GAN.

52.48



Types of GANs - WGAN-GP

WGAN-GP Samples WGAN-GP Latent Space Interpolations

GAN Variant Loss Function Key Features FID Score

WGAN-GP Wasserstein Distance + 
Gradient Penalty (GP)

Uses Wasserstein distance for a more stable measure of 
the difference between distributions. Gradient Penalty 
enforces the 1-Lipschitz constraint.

33.07



Variational Autoencoder (VAEs) Architecture
Encoder:

● Input: RGB image [3×32×32]
● Architecture: Series of Conv2D→ReLU 

layers with progressive spatial dimension 
reduction

● Output: Mean vector (μ) and log standard 
deviation vector (log σ) of dimension 128

● Reparameterization trick: z = μ + σ * ε 
where ε ~ N(0,1) Decoder:

● Input: 128-dimensional latent vector (z)
● Architecture: Linear projection → 

Reshape → Series of transposed 
convolutions with ReLU

● Output: Reconstructed RGB image 
[3×32×32]

Loss Function:

● Reconstruction Loss: MSE between 
input and reconstructed image

● KL Divergence: Regularizes latent 
space toward standard normal 
distribution

● β-Annealing: Gradually increases β 
during training for better latent 
organization



VAE Latent Space Exploration

Reconstruction sample: (size 16)

Reconstruction loss: ~200 

Reconstruction sample: (size 128)

Reconstruction loss: ~200 → ~75 

Reconstruction sample: (size 1024)

Reconstruction loss: ~200 → ~75 → ~40



VAE Sample Generation and β-Annealing

The left image shows samples generated with a fixed β value of 0.8. The right image shows samples generated 
after training with β-annealing (linearly increasing β from 0 to 0.8 over the first 20 epochs)

β-Annealing

To further improve the VAE's 
performance, we investigated the use 
of β-annealing. β controls the weight 
of the KL divergence term in the loss 
function. By gradually increasing β 
during training, we encourage the 
model to learn a more disentangled 
and well-structured latent space, 
which often leads to better sample 
quality.



Diffusion Model Architecture with DDPM & DDIM Sampling

Forward Process (Fixed):

● Input: Clean RGB image [3×32×32]
● Process: Sequential addition of Gaussian 

noise over T timesteps (not learned)
● Output: Pure Gaussian noise after T steps Reverse Process (Learned):

● Input: Noisy image at timestep t
● Architecture: U-Net predicts noise component ε_θ

(x_t, t)
● Process: Iterative denoising by subtracting 

predicted noise
● Output: Progressively cleaner image, approaching 

the original distribution
Sampling Strategies:

● DDPM: Markovian process requiring ~1000 
sequential denoising steps

● DDIM: Non-Markovian approach allowing larger 
jumps with only ~100 steps

● Trade-off: DDIM sacrifices some quality for 10× 
faster sampling



Diffusion Model Results

DDPM Samples DDIM Samples

DDPM (left) achieves slightly better FID score (34.73) with 1000 sampling steps, while DDIM (right) maintains comparable 
quality (FID 38.32) with only 100 steps, demonstrating a significant efficiency improvement with minimal quality loss.
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