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Abstract

Automating leaf manipulation in agricultural settings faces
significant challenges, including the variability of plant mor-
phologies and deformable leaves. We propose a novel hy-
brid geometric-neural approach for autonomous leaf grasp-
ing that combines classical computer vision with neural net-
works through self-supervised learning. Our method inte-
grates YOLOv8 for instance segmentation and RAFT-Stereo
for 3D depth estimation to build rich leaf representations,
which feed into both a geometric feature scoring pipeline and
a neural refinement module (GraspPointCNN). The key inno-
vation is our confidence-weighted fusion mechanism that dy-
namically balances the contribution of each approach based
on prediction certainty. Our self-supervised framework uses
the geometric pipeline as an expert teacher to automatically
generate training data. Experiments demonstrate that our ap-
proach achieves an 88.0% success rate in controlled envi-
ronments and 84.7% in real greenhouse conditions, signifi-
cantly outperforming both purely geometric (75.3%) and neu-
ral (60.2%) methods. This work establishes a new paradigm
for agricultural robotics where domain expertise is seamlessly
integrated with machine learning capabilities, providing a
foundation for fully automated crop monitoring systems.

Introduction
Agricultural robotics has emerged as a critical technology
for addressing labor shortages and improving efficiency in
modern farming operations (Bechar and Vigneault 2016).
Among the various tasks in greenhouse cultivation, leaf sam-
pling for disease detection and health monitoring remains a
significant bottleneck, requiring skilled workers to manually
identify, select, and extract tissue samples from thousands
of plants (Shamshiri et al. 2018). This labor-intensive pro-
cess not only increases operational costs but also limits the
frequency and scale of plant health monitoring, potentially
allowing diseases to spread undetected (Bac et al. 2014).

Automating leaf manipulation presents unique challenges
compared to traditional robotic grasping tasks. Unlike rigid
industrial objects, plant leaves are deformable, vary signif-
icantly in size and orientation, and are often partially oc-
cluded in dense canopies (Lehnert et al. 2017). While recent
advances in deep learning have revolutionized robotic grasp-
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ing for industrial applications (Mahler et al. 2017; Morri-
son, Corke, and Leitner 2018), these approaches typically
require large datasets of labeled grasp points—a resource
that is prohibitively expensive to create for agricultural set-
tings where plant morphology varies continuously through-
out growth cycles.

Existing approaches to agricultural manipulation fall into
two categories: purely geometric methods that rely on hand-
crafted features (Hemming et al. 2014a; Silwal et al. 2017),
and end-to-end deep learning systems trained on synthetic
or limited real-world data (Arad et al. 2020; Yu et al. 2019).
Geometric approaches, while interpretable and robust to do-
main shifts, struggle with the natural variability of plant
structures. Conversely, deep learning methods excel at han-
dling complex visual patterns but suffer from poor gener-
alization when deployed on new crop varieties or growth
stages not represented in their training data.

We present a novel hybrid approach that leverages the
complementary strengths of geometric reasoning and neu-
ral networks through self-supervised learning. Our key in-
sight is that traditional computer vision algorithms, despite
their limitations, encode valuable domain expertise that can
serve as a teacher for training neural networks without man-
ual annotation. This approach enables continuous learning
from operational data while maintaining the interpretability
and reliability required for agricultural automation.

Our system operates on a 6-DOF gantry robot equipped
with stereo vision and a custom end-effector for leaf ma-
nipulation. The perception pipeline combines YOLOv8 in-
stance segmentation (Jocher, Chaurasia, and Qiu 2023) with
RAFT-Stereo depth estimation (Lipson, Teed, and Deng
2021) to generate 3D representations of plant canopies. For
grasp point selection, we implement a dual-path architec-
ture: a geometric pipeline using Pareto optimization across
multiple hand-crafted features (flatness, accessibility, edge
distance), and a convolutional neural network with spatial
attention that learns from the geometric system’s decisions.

The main contributions of this work include:
• A self-supervised learning framework where geometric

algorithms act as expert teachers for neural networks,
eliminating the need for manual grasp annotation in agri-
cultural settings

• A hybrid decision architecture that dynamically weighs
geometric and learned features based on prediction confi-
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dence, achieving robust performance across diverse plant
conditions

• A comprehensive grasp point selection system incorpo-
rating novel scoring functions tailored to leaf-specific
constraints such as deformability, approach angles, and
occlusion handling

• Extensive validation on thousands of real plant samples
demonstrating significant improvements over traditional
geometric methods, particularly in challenging scenarios
with partial occlusion and irregular orientations

This work provides a foundation for fully automated crop
monitoring systems and establishes a new paradigm for agri-
cultural robotics where domain expertise is seamlessly inte-
grated with machine learning capabilities.

Related Work
Vision-Based Leaf Manipulation
Traditional approaches to robotic leaf manipulation in agri-
cultural settings relied on geometric reasoning and classical
computer vision. Hemming et al. developed methods for cu-
cumber leaf detection in greenhouses using color and tex-
ture features (Hemming et al. 2014b), while Bac et al. pre-
sented obstacle-aware motion planning for tomato canopies
(Bac et al. 2017). Several studies focused on deformable leaf
modeling, including Cerutti et al.’s parametric active poly-
gon models (Cerutti et al. 2013) and Xia et al.’s active shape
models for overlapping leaves (Xia et al. 2018). The inte-
gration of 3D information improved robustness, as demon-
strated by Guo and Xu’s multiview stereo reconstruction for
lettuce segmentation (Guo and Xu 2017). While effective in
controlled conditions, these methods often required exten-
sive tuning and struggled with natural plant variability.

Deep Learning for Agricultural Grasping
Deep learning has shown promise in agricultural manipula-
tion, though with unique challenges compared to industrial
applications. Barth et al. developed CNN-based systems for
broccoli harvesting that handle significant occlusion (Barth
et al. 2019), while Arad et al. demonstrated sweet pepper
harvesting combining YOLO detection with stereo depth
(Arad et al. 2020). For leaf-specific tasks, Ahlin et al. pi-
oneered CNN-based leaf identification with visual servoing
for autonomous sampling, achieving 85% success rates in
greenhouses (Ahlin et al. 2016). However, these approaches
typically require extensive training data—a significant lim-
itation given the continuous variation in plant morphology.
To address this, researchers have explored simulation, with
approaches like Dex-Net generating synthetic grasp scenar-
ios (Mahler et al. 2017), inspiring agricultural adaptations
for data generation.

Self-Supervised Learning in Agricultural Robotics
Self-supervised learning has emerged as a promising
paradigm for agricultural robotics, particularly where man-
ual annotation is expensive. Zhang et al. demonstrated self-
supervised learning for tomato harvesting, using classical
vision systems to provide training labels (Zhang and Yang

2021). Similar bootstrapping approaches include Kootstra
et al.’s work on sweet pepper detection, where geomet-
ric algorithms generated training data for neural networks
(Kootstra et al. 2021). This knowledge transfer from classi-
cal to learning-based systems has proven particularly valu-
able in controlled environment agriculture, where hybrid
approaches consistently outperform purely learned policies
(Shamshiri et al. 2018).

3D Perception and Hybrid Systems
Accurate depth sensing is crucial for manipulation in dense
plant canopies. While traditional stereo algorithms struggle
with plant textures, recent advances like RAFT-Stereo have
dramatically improved accuracy for agricultural applications
(Lipson, Teed, and Deng 2021). Lipson et al.’s recurrent
architecture achieves state-of-the-art performance on chal-
lenging plant datasets, enabling precise leaf pose estimation
(Sa et al. 2017). Recent research increasingly combines clas-
sical and learning approaches, as demonstrated by Lehnert
et al.’s hybrid system for pepper harvesting (Lehnert et al.
2016). These hybrid architectures leverage geometric inter-
pretability with neural adaptability, making them ideal for
complex agricultural tasks where safety and reliability are
paramount (Duckett et al. 2018).

Method
We present a hybrid approach for autonomous leaf grasp-
ing that combines geometric algorithms with neural net-
works through self-supervised learning. Our system elim-
inates the need for manual grasp annotation while main-
taining robust performance in complex greenhouse environ-
ments. This section details our perception pipeline, grasp
point selection algorithms, and the self-supervised frame-
work that bridges classical and modern approaches.

System Overview
Figure 1 presents our hybrid leaf grasping system archi-
tecture, consisting of three modules: vision pipeline, grasp
point selection, and robot manipulation. The system pro-
cesses stereo image pairs from a 6-DOF gantry robot to out-
put precise 3D grasp coordinates.

The vision pipeline employs YOLOv8 for instance seg-
mentation of individual leaves and RAFT-Stereo for dense
depth estimation. As shown in Figure 1, these outputs are
fused to create 3D leaf representations containing both se-
mantic and geometric information.

The grasp point selection module implements our hybrid
approach through two parallel paths. The geometric feature
scoring path evaluates candidates using traditional CV algo-
rithms based on features like flatness, accessibility, and ap-
proach angles. Simultaneously, the neural refinement path
(GraspPointCNN) processes the same data using learned
features. Both predictions are combined through confidence-
weighted fusion, dynamically balancing traditional CV (70-
90%) and neural network (10-30%) contributions.

Our key innovation is the self-supervised training scheme
where geometric algorithms act as expert teachers, automat-
ically labeling grasp points to train the neural network. This



Figure 1: System architecture showing the integration of vision pipeline, grasp point selection, and robot manipulation modules.
The hybrid approach combines geometric feature scoring with neural refinement through confidence-weighted fusion.

Figure 2: Vision pipeline outputs: (a) Instance segmenta-
tion with individual leaf masks, (b) RAFT-Stereo disparity
map, (c) 3D point cloud reconstruction with highlighted tar-
get leaf.

enables the system to initially mimic geometric reasoning
while developing generalization capabilities beyond hand-
crafted features.

The robot manipulation module executes precise leaf
grasping using the final 3D coordinates, with motion plan-
ning optimized for the gantry configuration and safety vali-
dation through force feedback.

Vision Pipeline
The vision pipeline, illustrated in the left section of Figure 1,
processes stereo image pairs to generate rich 3D represen-
tations of plant leaves. This pipeline employs two parallel
processing streams: instance segmentation and stereo depth
estimation, whose outputs are fused to create comprehensive
leaf models for grasp planning.

Instance Segmentation We utilize YOLOv8 (Jocher,
Chaurasia, and Qiu 2023) for real-time instance segmenta-
tion of individual leaves. Unlike standard implementations,
we fine-tuned YOLOv8 on a custom dataset of 900+ images
containing soybean and tomato plants in greenhouse condi-
tions. This domain-specific training enables robust leaf de-
tection even in challenging scenarios with significant over-
lap and occlusion, achieving 90%+ confidence scores in op-
erational conditions.

As shown in Figure 2, the network outputs binary
masks for each detected leaf instance along with confi-
dence scores. The segmentation accurately delineates in-
dividual leaf boundaries despite complex overlapping pat-
terns typical in dense canopies. Our implementation pro-
cesses 1440×1080 resolution images at approximately 50ms
per frame, meeting real-time requirements for robotic ma-
nipulation. Each detected leaf is assigned a unique identifier

and confidence score, enabling robust tracking throughout
the grasp selection process.

Stereo Depth Estimation For 3D reconstruction, we em-
ploy RAFT-Stereo (Lipson, Teed, and Deng 2021), which
generates dense disparity maps through iterative refinement
using recurrent all-pairs field transforms. This approach han-
dles the thin structures and low-texture regions characteristic
of plant foliage more reliably than traditional stereo match-
ing algorithms (Scharstein and Szeliski 2002).

(a) Raw stereo image (b) RAFT-Stereo depth map

(c) 3D leaf reconstruction from stereo depth and segmentation

Figure 3: RAFT-Stereo outputs showing the processing
pipeline: (a) Raw image from the left camera of the stereo
pair, (b) Generated disparity map where warmer colors in-
dicate closer objects, (c) Final 3D reconstruction combining
depth and segmentation data.

Our calibrated stereo pair captures synchronized images
at 1440×1080 resolution. As illustrated in Figure 3, RAFT-
Stereo processes these to produce sub-pixel accurate dispar-
ity maps in approximately 60ms, achieving 29% lower 1-
pixel error than previous methods on standard benchmarks
(Geiger, Lenz, and Urtasun 2012). The disparity values are
converted to metric depth using the camera calibration pa-
rameters, enabling accurate 3D reconstruction.



3D Reconstruction Each pixel (u, v) with disparity d is
back-projected to 3D coordinates (X,Y, Z) using:

X =
(u− cx) · Z

fx
, Y =

(v − cy) · Z
fy

, Z =
f · b
d

(1)

where f is the focal length, b is the stereo baseline, and
(cx, cy) are the principal point coordinates. The resulting
point cloud provides comprehensive 3D structure of the
scene, as shown in Figure 3(c).

Data Fusion The vision pipeline combines segmentation
masks with depth information to create per-leaf 3D models.
For each detected leaf instance, we:
• Extract 3D points by masking the depth map with the

leaf’s segmentation mask
• Compute geometric properties including centroid posi-

tion, surface area, and orientation
• Estimate surface normals through local plane fitting for

flatness evaluation
• Identify occlusion by detecting missing depth data within

mask boundaries
This fusion process outputs a structured representation of

each leaf containing both 2D mask information and 3D ge-
ometric properties, providing the necessary data for subse-
quent grasp point selection algorithms. The geometric pro-
cessing includes signed distance field (SDF) generation,
which will be detailed in Section .

Geometric Feature Scoring Pipeline
The geometric feature scoring pipeline evaluates candidate
leaves and grasp points using hand-crafted features derived
from classical computer vision principles. This deterministic
approach provides interpretable decisions and serves as the
foundation for our self-supervised learning framework.

Optimal Leaf Selection Given the set of segmented
leaves from the vision pipeline, we evaluate each leaf us-
ing three key metrics: clutter, distance, and visibility. These
metrics are combined using Pareto optimization to identify
the optimal grasping target.

L∗ = argmax
Li∈L

(
wcSc(Li) + wdSd(Li) + wvSv(Li)

)
(2)

Where:
– L∗ is the optimal leaf selection
– L is the set of all detected leaves
– Sc(Li) is the clutter/isolation score for leaf i
– Sd(Li) is the distance score for leaf i
– Sv(Li) is the visibility score for leaf i
– wc, wd, wv are the weights (0.35, 0.35, 0.30)

Clutter Score quantifies leaf isolation using signed dis-
tance fields (SDF):

Sclutter =
dmin

dmin + dmax
(3)

Where:

(a) Raw image with candidates (b) SDF representation

Figure 4: Signed Distance Field (SDF) visualization for
grasp planning: (a) Raw plant image with leaf candidates,
(b) SDF representation showing free space (purple/blue) and
occupied regions (yellow/red). Red rays indicate potential
grasp approach directions.

– dmin is the distance from centroid to SDF minimum
– dmax is the distance from centroid to SDF maximum

Distance Score evaluates the leaf’s 3D Euclidean dis-
tance from the camera:

Sdistance = e−
dmean

0.3 (4)
Where:

– dmean is the mean Euclidean distance of leaf points
– 0.3m is the scale factor

Visibility Score assesses leaf completeness and position:

Svisibility =

{
0 if leaf touches image border
1− dcenter

dmax
otherwise

(5)
Where:

– dcenter is the distance from leaf centroid to image center
– dmax is the maximum possible distance in the image

The final leaf selection employs Pareto optimization with
weighted scoring:

Sleaf = 0.35 · Sclutter + 0.35 · Sdistance + 0.30 · Svisibility

(6)
Figure 4 illustrates the SDF computation used for clutter

evaluation. The SDF representation enables efficient calcu-
lation of clearance around each leaf candidate, with warmer
colors indicating proximity to obstacles.

Geometric Grasp Point Scoring Once the target leaf is
selected, we generate candidate grasp points uniformly dis-
tributed across the leaf surface. Each candidate is evaluated
using four geometric features:

G∗ = argmax
p∈L∗

(
wfF (p) + waA(p)

+ weE(p) + waccAcc(p)
)
· (1− Spen(p))

(7)
Where:



– G∗ is the optimal grasp point
– p is a candidate point on the selected leaf L∗

– F (p) is the flatness score at point p
– A(p) is the approach vector alignment score at point p
– E(p) is the edge margin score at point p
– Acc(p) is the accessibility score at point p
– Spen(p) is the stem penalty term
– wf , wa, we, wacc are the weights (0.25, 0.40, 0.20, 0.15)

Flatness Score measures local surface planarity using
depth gradients:

F (p) = e−α·
√

|∇xD(p)|2+|∇yD(p)|2 (8)
Where:

– D(p) is the depth value at point p
– ∇xD and ∇yD are the gradients in x and y directions
– α = 5.0 is the scaling factor

Approach Vector Alignment evaluates grasp accessibil-
ity:

A(p) =
∣∣∣ v⃗(p) · z⃗|v⃗(p)|

∣∣∣ (9)

Where:
– v⃗(p) is the vector from camera to point p
– z⃗ is the unit vector in the vertical direction (0,0,1)

Edge Distance Score penalizes points near leaf bound-
aries:

E(p) = min
(
1,

dedge(p)

dsafe

)
(10)

Where:
– dedge(p) is the distance to the nearest edge
– dsafe = 5mm is the minimum safe distance

Accessibility Score considers kinematic reachability:

Acc(p) = 0.7 ·
(
1− d(p, c)

dmax

)
+ 0.3 · cos(θ(p)) (11)

Where:
– d(p, c) is the distance from point p to the image center
– dmax is the maximum distance in the image
– θ(p) is the angle between the vector to point p and the

forward direction
The final grasp quality score combines these metrics:

Sgrasp = 0.25·F (p)+0.40·A(p)+0.20·E(p)+0.15·Acc(p)
(12)

Figure 5 demonstrates the complete geometric pipeline
output, showing the selected leaf, evaluated grasp candi-
dates, and the final chosen grasp point with its 3D coordi-
nates. This deterministic output serves as ground truth for
training our neural refinement module, detailed in the fol-
lowing section.

(a) Raw input image from the stereo camera

(b) Geometric Feature Scoring Pipeline output

Figure 5: Grasp point selection visualization. (a) Raw cam-
era image showing leafs and optimal leaf’s midrib. (b) Ge-
ometric feature scoring output showing selected leaf (blue
outline), candidate grasp points, and final selected grasp
point with approach vector. The visualization includes safety
margins and coordinate information.

Stem Proximity Penalty An additional penalty is applied
to prevent grasping near the leaf stem:

Sfinal = Sgrasp · (1− Sstem penalty) (13)
Where:

– Sstem penalty = e−α·dstem

– dstem is the distance to the detected stem region
– α = 0.1 is the decay factor

The geometric pipeline outputs a grasp proposal consist-
ing of the selected leaf index and optimal grasp point coor-
dinates, providing a robust baseline for our hybrid system.

Despite its effectiveness, the geometric pipeline has sev-
eral limitations. It struggles with irregular leaf morphologies
not captured by hand-crafted features, requires extensive pa-
rameter tuning across plant species, and performs inconsis-
tently in scenarios with dense occlusion or unusual light-
ing conditions. The correlation coefficients between expert-
selected grasp points and geometric pipeline selections drop
significantly from 0.92 for ideal conditions to 0.68 for chal-
lenging scenarios. These limitations motivate our neural re-
finement module (GraspPointCNN), which learns from the
geometric system’s successes while developing generaliza-
tion capabilities beyond hand-crafted features, particularly



for edge cases where traditional computer vision approaches
falter.

Neural Refinement Module (GraspPointCNN)
While the geometric feature scoring pipeline provides a
robust baseline for leaf grasping, its fixed heuristics limit
adaptability to novel plant morphologies and environmental
conditions. We introduce GraspPointCNN, a convolutional
neural network with spatial attention that learns to evalu-
ate grasp candidates by capturing complex patterns beyond
hand-crafted features.

Network Architecture GraspPointCNN employs a com-
pact yet effective architecture designed for real-time infer-
ence. The network consists of:
Input Layer: A 9-channel feature representation combin-
ing:

• Depth patch (1 channel): Local 3D structure information
• Binary segmentation mask (1 channel): Leaf boundary

information
• Geometric score maps (7 channels): Individual compo-

nent scores from the traditional pipeline

Encoder Blocks: Three sequential encoder blocks, each
containing:

• 2D convolution (kernel size 3×3, stride 1)
• Batch normalization
• ReLU activation
• Max pooling (2×2, stride 2)

The three-encoder architecture provides an optimal balance
between computational efficiency and feature extraction ca-
pacity, as determined through ablation studies comparing 2-
5 encoder variants.
Spatial Attention Mechanism: A novel leaf-specific atten-
tion module that emphasizes salient regions:

Fspatial = σ(Conv7×7(Concat[AvgPool(F ),MaxPool(F )]))

Fatt = F ⊙ Fspatial

(14)
Where:

– F represents feature maps
– σ is the sigmoid activation
– ⊙ denotes element-wise multiplication

This attention mechanism allows the network to focus on
critical leaf features such as venation patterns, curvature
transitions, and surface variations that impact graspability.
Decision Layers: The network concludes with:

• Global average pooling to ensure translation invariance
• Two fully-connected layers (128 and 64 neurons)
• Sigmoid activation producing a final grasp quality score

[0,1]

The compact design (approximately 285K parameters)
enables inference in under 10ms on standard GPU hardware,
making it suitable for real-time robotic applications.

Input Representation For each candidate grasp point, we
extract a 32×32 pixel patch centered at the point from the
following sources:

Xinput = [Xdepth, Xmask, Xscores] (15)

Where:

– Xdepth is the normalized local depth patch
– Xmask is the binary segmentation mask
– Xscores contains seven geometric score maps (flatness,

approach vector, edge distance, accessibility, etc.)

This multi-modal representation combines geometric, se-
mantic, and raw depth information, enabling the network
to reason about both local and contextual factors affecting
grasp success. By incorporating the individual component
scores from the traditional pipeline, the network can learn
which features are most relevant in different scenarios, ef-
fectively developing an adaptive weighting scheme.

Confidence Estimation A key innovation in our approach
is the estimation of prediction confidence alongside grasp
quality scores. Rather than simply outputting a binary clas-
sification, GraspPointCNN produces a continuous score that
encodes both grasp quality and prediction certainty:

Cpred = 1.0− |Spred − 0.5| × 2 (16)

Where:

– Spred is the raw network output [0,1]
– Cpred is the confidence score [0,1]

This formulation yields maximum confidence (1.0) for ex-
treme predictions (0 or 1) and minimum confidence (0) for
uncertain predictions (0.5). The confidence estimation en-
ables our hybrid integration system to dynamically balance
traditional and learned approaches based on prediction reli-
ability.

The neural architecture effectively addresses the limita-
tions of pure geometric approaches through:

• Generalization to novel morphologies: By learning from
diverse leaf examples, the network generalizes to plant
structures not explicitly encoded in hand-crafted features

• Contextual understanding: The spatial attention mecha-
nism captures relationships between local surface prop-
erties and broader leaf context

• Adaptability to environmental variations: Learning from
operational data across different lighting conditions
and growth stages enables robustness to environmental
changes

• Uncertainty awareness: The confidence estimation pro-
vides critical information for safe hybrid decision-
making

The GraspPointCNN complements the geometric pipeline
by focusing on capturing patterns that emerge from com-
plex interactions between multiple factors, rather than treat-
ing each feature independently. This holistic approach is par-
ticularly valuable for edge cases where traditional CV ap-
proaches falter.



Self-Supervised Learning Framework
A key challenge in developing learning-based robotic grasp
systems for agriculture is the lack of labeled training data.
We address this through a self-supervised framework where
the geometric pipeline acts as an expert teacher, automati-
cally generating training data without human intervention.

Automatic Training Data Generation Our approach
leverages the geometric pipeline to create a continuously
growing dataset:
1. Positive Sample Collection: During operation, the sys-

tem captures successful grasp points selected by the ge-
ometric pipeline along with their local context (32×32
pixel patches).

2. Data Augmentation: To increase sample diversity, we
employ:
• Rotational transformations (90°, 180°, 270°)
• Random cropping with 0.9-1.0 scale factor
• Mild brightness and contrast adjustments (±10%)
• Gaussian noise injection (σ = 0.01)
• Random horizontal flipping

3. Negative Sample Generation: We systematically iden-
tify challenging regions:
• Leaf tips (distance transform maxima)
• Stem regions (morphological analysis)
• High-curvature edges (depth gradient thresholding)

4. Validation Filtering: An automated quality assessment
removes low-quality samples based on depth completion,
segmentation quality, and score consistency.

This process yielded a dataset with the following compo-
sition:

Dataset Component Count
Original Positive Samples 125
Augmented Positive Samples 375
Negative Samples 375
Total Dataset Size 875

Table 1: Composition of the self-supervised training dataset.

Training Methodology GraspPointCNN was trained us-
ing binary cross-entropy loss with positive class weighting:

L = − 1

N

N∑
i=1

[wp · yi log(ŷi) + (1− yi) log(1− ŷi)] (17)

Where yi is the ground truth label, ŷi is the predicted score,
and wp = 2.0 is the positive class weight.

The model was trained with:
• Learning rate: 0.0005
• Weight decay: 0.01
• Batch size: 16
• Early stopping: 15 epochs patience

Validation accuracy reached 93.14% after approximately
85 epochs, with higher accuracy on positive samples
(97.09%) than negative samples (88.27%).

Continuous Learning Pipeline Our self-supervised ap-
proach enables continuous improvement through opera-
tional experience:

1. Collecting new examples from successful and failed
grasps

2. Updating the training dataset with new samples
3. Periodically retraining the model with expanded data
4. Deploying the improved model with updated weights

During a three-week deployment, we observed a 2.3% im-
provement in grasp success rate from this continuous learn-
ing process, demonstrating adaptation to new plant varieties
and growth stages without explicit retraining.

By leveraging domain expertise encoded in the geomet-
ric pipeline, our system learns robust grasp representations
without manual annotation, enabling practical deployment
in dynamic greenhouse environments.

Hybrid Decision Integration
The final component of our system combines the determin-
istic geometric pipeline with the adaptive neural network
through a novel confidence-weighted integration frame-
work. Our hybrid approach dynamically balances traditional
expertise with learned patterns based on prediction confi-
dence, rather than using a simple ensemble or switching
mechanism.

The process begins with the geometric pipeline identify-
ing the optimal leaf for manipulation using the Pareto-based
selection. Once the target leaf is selected, we generate a di-
verse set of candidate grasp points by identifying the top-20
scoring positions from the geometric pipeline. A minimum
separation distance of 10 pixels is enforced between candi-
dates to ensure diversity, and each candidate’s local context
(32×32 patches) is extracted for neural evaluation. This can-
didate generation approach ensures that points with strong
geometric properties are prioritized while maintaining suffi-
cient diversity for neural refinement.

For each candidate point, we compute a hybrid score that
combines traditional geometric metrics with neural network
predictions through a confidence-weighted formula:

Shybrid = (1− wML) · SCV + wML · SML (18)

Where SCV is the normalized geometric score, SML is the
grasp quality score predicted by GraspPointCNN, and wML

is an adaptive weight determined by neural confidence. The
neural weight is dynamically computed as

wML = min(0.3, Cpred · 0.6) (19)

where Cpred is the confidence score described in Section .
This formulation caps ML influence at 30% even with per-
fect confidence, scales influence proportionally to prediction
confidence, and approaches zero for uncertain predictions—
effectively falling back to geometric scoring when confi-
dence is low. This adaptive weighting scheme preserves the
reliability of geometric constraints while leveraging neural
refinement when confidence is high.

In deployment, the hybrid scoring occurs within a 15ms
processing window, maintaining real-time performance for



robotic manipulation. The system implements several safe-
guards to ensure robustness: a fallback mechanism that de-
faults to pure geometric scoring if all neural predictions have
low confidence (below 0.4), a lightweight Kalman filter that
smooths selections across frames to prevent jitter, and a pre-
grasp validation step that performs collision and reachability
checks before execution. Our approach differs from previ-
ous hybrid systems in agricultural robotics that typically use
static weighted combinations or separate models for differ-
ent plant varieties. The dynamic confidence-based weight-
ing allows our system to handle both clear geometric cases,
where traditional approaches excel, and more ambiguous sit-
uations where learned patterns improve performance.

Experiments and Results
To evaluate our hybrid geometric-neural approach for
robotic leaf manipulation, we conducted comprehensive ex-
periments addressing four key questions: (1) How does the
hybrid approach compare to purely geometric or learning-
based methods? (2) What is the contribution of each system
component? (3) How well does the system generalize across
plant varieties and growth stages? (4) What is the real-world
performance in greenhouse conditions?

Dataset and Setup
Hardware Configuration Experiments were conducted
using the T-Rex platform, a gantry-based robotic system for
autonomous leaf manipulation in greenhouse environments.
The system spans a 3m × 1.5m growing area with a 6-DOF
configuration (three prismatic axes for positioning and three
revolute joints for orientation). This configuration enables
precise end-effector positioning and orientation within the
plant canopy.

The end-effector includes two lateral grippers controlled
by a Dynamixel motor that close to secure the target leaf, and
a vertical stepper motor that lowers a microneedle array for
leaf sampling. A stereo camera system with 1440×1080 res-
olution and 80mm baseline mounted on the end-effector cap-
tures images for perception. The robot operates under ROS
with distributed nodes for perception, planning, and actua-
tion.

Figure 6: CAD rendering of T-Rex’s wrist and end-effector
subsystem. The design features three revolute joints for yaw,
pitch, and roll control (axes 4–6), and includes an onboard
stereo camera and microneedle sampling tool.

Dataset Collection The dataset includes tomato (60%)
and soybean (40%) plants at various growth stages grown
under controlled greenhouse conditions. For evaluation, 200
leaf images were annotated by horticultural experts who
identified optimal grasping points. The self-supervised train-
ing dataset (875 samples) described in Section was derived
from this collection, while testing used 150 separate stereo
image pairs with novel plant arrangements.

Evaluation Metrics System performance was evaluated
using five metrics:

1. Grasp Point Accuracy (GPA): Mean Euclidean dis-
tance between algorithm-selected and expert-annotated
grasp points (mm).

2. Feature Alignment Score (FAS): Percentage of grasp
points correctly aligned with leaf structures like midveins
(within 5mm while maintaining 10mm edge distance).

3. Edge Case Handling (ECH): Success rate on challeng-
ing scenarios including occlusion, irregular leaf shapes,
and non-standard orientations.

4. Planning Time (PT): Computation time from image ac-
quisition to grasp point selection (ms).

5. Overall Success Rate (OSR): Percentage of successful
tissue acquisitions without leaf damage.

For comparative analysis, we implemented three base-
lines: a Geometric-Only pipeline, a CNN-Only direct regres-
sion network, and a Static-Hybrid system using fixed-weight
combination without confidence-based adaptation. All eval-
uations used identical hardware and test datasets, with statis-
tical significance assessed via paired t-tests with Bonfernier
correction.

Figure 7: The T-Rex gantry robot setup inside a controlled
lab environment. It spans a 3m × 1.5m plant bed, and in-
cludes a ceiling-mounted manipulator, LED grow lights,
stereo camera, and custom end-effector for leaf sampling.

Ablation Studies
To understand the contribution of individual components to
the overall system performance, we conducted a series of ab-
lation studies. These experiments systematically removed or



modified key elements of our hybrid approach while main-
taining all other components unchanged. Table 2 summa-
rizes the results of these experiments, measured across our
evaluation metrics.

Component Contribution Analysis Leaf Selection Met-
rics: When removing individual components from the leaf
selection process, we observed significant impacts on over-
all performance:
• Without Clutter Score: Removing the clutter metric

from leaf selection (choosing the closest, most visible
leaf regardless of isolation) resulted in a 25.7% drop
in overall success rate. The system frequently selected
leaves that were too entangled with neighboring fo-
liage, making proper grasping nearly impossible in dense
canopies.

• Without Distance Score: Eliminating the distance-based
prioritization caused a 16.3% reduction in success rate.
The system often selected leaves at extreme distances
from the end-effector, requiring complex motion plan-
ning that frequently resulted in suboptimal approach tra-
jectories or unreachable targets.

• Without Visibility Score: Removing the visibility com-
ponent reduced success by 12.8%, as the system occa-
sionally selected partially occluded leaves where depth
estimation was unreliable, or leaves at image edges with
incomplete segmentation.

Grasp Point Selection Features: We also evaluated the
contribution of individual geometric features in grasp point
scoring:
• Without Flatness Score: Eliminating the surface flat-

ness evaluation caused a significant 17.5% decrease in
success rate. When attempting to grasp curved leaf sec-
tions, the leaf would often fail to properly enter the grip-
per slot, instead being pushed away during the approach,
resulting in failed acquisition.

• Without Approach Vector: When approach vector
alignment was removed, success rate dropped by 29.3%,
the largest decline among all single-component abla-
tions. Without proper approach angle consideration, the
end-effector frequently contacted leaves at angles that
caused folding, slipping, or deflection rather than suc-
cessful grasping.

• Without Edge Distance: Removing the edge margin
safety caused a 21.2% reduction in success, with failures
typically involving grasps too close to leaf boundaries
that resulted in tearing or slipping during the acquisition
process.

Neural Refinement Analysis We also studied the impact
of varying neural network contribution in the hybrid deci-
sion integration:
• CNN Weight Cap Variations: We systematically ad-

justed the maximum weight (wML) allowed for neural
refinement:
– With a 5% cap (minimal CNN influence), success rate

fell to 80.2%, as the neural component had insufficient
impact to correct geometric misjudgments

– With a 50% cap (balanced but CNN-favoring), success
rate was 81.7%, showing diminishing returns beyond
our chosen 30% cap

– With a 100% cap (CNN can fully override geometry),
performance dropped to 65.3%, similar to the CNN-
only baseline

• Without Confidence Weighting: Replacing our adap-
tive confidence-based weighting with a fixed 30/70 blend
between neural and geometric scoring decreased success
rate by 14.1%. This demonstrates the substantial value of
dynamically adjusting neural influence based on predic-
tion confidence, particularly in ambiguous cases.

Discussion These ablation studies validate our design de-
cisions across the pipeline. The approach vector alignment
emerged as the most critical geometric feature with a 29.3%
performance impact, followed by the clutter score (25.7%)
and edge distance (21.2%). This confirms our hypothesis
that proper approach angle and leaf isolation are fundamen-
tal prerequisites for successful grasping, while maintaining
adequate distance from leaf edges prevents fragile tissue
damage.

The results also highlight the complementary nature of
geometric and learned approaches. While geometric meth-
ods provide reliable baseline performance through explicit
modeling of physical constraints, the neural refinement ef-
fectively handles edge cases where purely geometric reason-
ing falls short. This is particularly evident in scenarios with
irregular leaf morphology or complex occlusions.

The dramatic performance drops observed when remov-
ing key components underscore the importance of our multi-
faceted approach to leaf grasping, where each feature ad-
dresses a specific failure mode that would otherwise signifi-
cantly impair system reliability.

Comparative Analysis
To evaluate our hybrid approach against existing methods,
we conducted comprehensive experiments using the metrics
defined in Section .

Baseline Comparison Table 3 presents performance com-
parisons between our approach and three baseline imple-
mentations across 150 test cases.

Our confidence-weighted hybrid approach significantly
outperformed all baselines. The purely neural approach
achieved only 60.2% overall success rate, struggling with
novel leaf arrangements not encountered during training.
The geometric-only approach reached 75.3% success, con-
firming the value of explicit feature modeling, but faltered
with irregular leaf morphologies and complex occlusions.
The static hybrid approach with fixed weighting improved to
79.8%, still substantially behind our adaptive method. Com-
putationally, our approach added only 9.3ms over the geo-
metric baseline—an acceptable tradeoff for the 12.7% im-
provement in success rate.

Comparison to Literature Our 88.0% success rate in
dense foliage represents a significant advancement in leaf
manipulation. Ahlin et al. (Ahlin et al. 2016) demonstrated
leaf picking using visual servoing but without reporting



Configuration GPA (mm)↓ FAS (%)↑ ECH (%)↑ OSR (%)↑
Complete System 4.2 92.6 83.4 88.0
w/o Clutter Score 8.7 72.3 55.9 62.3
w/o Distance Score 7.1 81.5 68.2 71.7
w/o Visibility Score 6.8 84.7 71.3 75.2
w/o Flatness Score 7.9 79.3 63.8 70.5
w/o Approach Vector 9.8 68.4 51.2 58.7
w/o Edge Distance 8.3 76.5 61.3 66.8
CNN Weight Cap 5% 5.3 87.9 76.5 80.2
CNN Weight Cap 50% 5.0 88.3 77.1 81.7
CNN Weight Cap 100% 8.7 75.6 61.9 65.3
Fixed Weighting (30/70) 6.5 82.4 70.1 73.9

Table 2: Ablation study results showing component contributions to system performance.

Method GPA (mm)↓ FAS (%)↑ ECH (%)↑ PT (ms)↓ OSR (%)↑
Geometric-Only 7.8 79.3 61.5 149.4 75.3
Neural-Only 9.2 73.8 52.7 142.6 60.2
Static-Hybrid (70/30) 6.1 85.2 69.8 157.2 79.8
Our Approach 4.2 92.6 83.4 158.7 88.0
Improvement +3.6 +7.4 +13.6 +9.3 +8.2

Table 3: Performance comparison of our hybrid approach and baselines.

quantitative success rates. Their monocular approach re-
quired careful camera alignment, while our stereo-based
system resolves depth ambiguities across varying view-
points.

For context, robotic fruit harvesting systems typically
achieve 70-90% success in less cluttered environments (Sil-
wal et al. 2017; Arad et al. 2020; Bac et al. 2017). Bac et al.
(Bac et al. 2017) reported 83% success for sweet pepper har-
vesting, while Silwal et al. (Silwal et al. 2017) achieved 84%
for apples under ideal conditions. Our 88% success in highly
cluttered leaf scenarios demonstrates the effectiveness of our
approach given the additional challenges of occlusion and
thin structures.

Sa et al. (Sa et al. 2017) combined color and 3D informa-
tion for sweet pepper peduncle detection, achieving 90% de-
tection accuracy but not reporting manipulation success. Our
approach extends this multi-modal paradigm to the more
challenging domain of leaf manipulation, where targets are
deformable, thin, and frequently occluded.

Our hybrid confidence-weighted integration particularly
excels in cluttered environments by dynamically adjusting
neural influence based on prediction confidence while main-
taining geometric reasoning as a reliable fallback. This adap-
tive integration advances beyond existing agricultural sys-
tems that typically rely on either pure geometric reasoning
(Bac et al. 2014) or standalone neural approaches (Yu et al.
2019; Ahlin et al. 2016).

Real-World Validation
To validate our approach beyond controlled experiments,
we deployed the hybrid grasp point selection system in
real greenhouse environments with plants at various growth
stages. This section presents qualitative results from these

deployments and discusses system performance under au-
thentic operational conditions.

Operational Deployment We conducted validation trials
spanning 12 days across three different greenhouse facilities,
with the T-Rex system performing 340 autonomous leaf ma-
nipulation operations. Plants included tomato and soybean
varieties at different growth stages, from young seedlings to
mature plants with complex canopy structures.

Figure 8 shows the system during operation, with the end-
effector approaching a selected leaf on a young tomato plant.
The deployment configuration matched our experimental
setup, with the system operating fully autonomously through
the complete perception-planning-execution pipeline.

Qualitative Performance Analysis The real-world vali-
dation confirmed the performance advantages observed in
controlled experiments. Figure 9 illustrates a direct compar-
ison between traditional CV and our hybrid approach on the
same scene. The traditional CV method (top) selects a grasp
point near the leaf edge, which would likely result in a failed
grasp as the gripper could slip off. In contrast, our hybrid
approach (bottom) selects an optimal grasp point further in-
ward on the leaf, providing better stability during manipu-
lation. This subtle but critical difference demonstrates how
neural refinement corrects edge cases where purely geomet-
ric reasoning falls short.

The hybrid system demonstrated particularly strong per-
formance in challenging scenarios frequently encountered
in practical operations. Under variable lighting conditions,
the confidence-weighted integration maintained consistent
performance across morning, midday, and afternoon light-
ing variations, where purely geometric approaches often
faltered due to changing shadow patterns. As plants pro-
gressed through growth stages, leaf morphology evolved sig-



(a) Start of grasp: approach-
ing the leaf

(b) Grasp complete: mi-
croneedle fired

Figure 8: Real-world grasp execution. (a) The robot ap-
proaches the selected leaf from above using a vertical trajec-
tory. (b) The microneedle-based end-effector makes contact
and extracts the tissue sample.

nificantly, but the neural component effectively adapted to
these changes while the geometric baseline provided consis-
tent safety constraints. The system also successfully trans-
ferred to plant varieties not represented in the training data,
demonstrating the hybrid approach’s generalization capabil-
ities. Across all validation trials, the system achieved an
84.7% overall success rate in operational settings—slightly
lower than the 88.0% observed in controlled experiments,
but still significantly outperforming both geometric-only
(70.3%) and neural-only (58.1%) approaches in the same
conditions.

The practical validation confirmed that our confidence-
weighted approach effectively combines the reliability of
geometric constraints with the adaptability of neural refine-
ment, resulting in a robust system capable of autonomous
operation in dynamic agricultural environments.

Discussion
Our experiments demonstrate that a hybrid approach com-
bining geometric feature scoring with neural refinement sig-
nificantly improves grasp point selection for robotic leaf ma-
nipulation. The 12.7% improvement in success rate over
purely geometric methods and 27.8% over purely neural
approaches underscores the complementary nature of these
techniques when properly integrated.

The confidence-weighted fusion mechanism proved par-
ticularly valuable for dynamic adaptation in complex envi-
ronments. While traditional CV approaches excel at encod-
ing explicit constraints and physical principles, they struggle
with the variability of natural leaf structures. Conversely,
neural networks capture implicit patterns but may lack the
robustness of geometric reasoning in novel scenarios. By dy-
namically adjusting the contribution of each approach based

Figure 9: Comparison of grasp point selection: traditional
CV approach (top) selects a point near the leaf edge which
may lead to failed grasping, while our hybrid approach (bot-
tom) selects an optimal point further inward providing better
stability during manipulation.

on prediction confidence, our system leverages the strengths
of both paradigms while mitigating their individual weak-
nesses.

The ablation studies revealed that approach vector align-
ment and clutter scoring contribute most significantly to
successful grasping, highlighting the critical importance of
proper leaf positioning prior to contact. This finding sug-
gests that pre-grasp planning deserves particular attention
in agricultural manipulation systems, potentially even more
than precise fingertip placement.

Despite these advances, several limitations remain. The
system occasionally struggles with extremely thin or translu-
cent leaves where stereo depth estimation becomes unreli-
able. Additionally, while our self-supervised learning frame-
work enables continuous improvement, it may propagate bi-
ases from the geometric pipeline that serves as its teacher.
Future work could explore active learning approaches where
human feedback selectively corrects these biases without re-
quiring extensive manual annotation.

The demonstrated performance in real greenhouse envi-
ronments positions this technology for practical deployment
in precision agriculture applications. Beyond leaf sampling,
the hybrid confidence-weighted approach could potentially
transfer to other agricultural manipulation tasks such as se-



lective harvesting, pollination, or pest management where
similar challenges of biological variability and environmen-
tal dynamics exist.

Conclusion
We presented a hybrid confidence-weighted approach for
robotic leaf manipulation that combines geometric fea-
ture scoring with neural refinement. Our system integrates
YOLOv8 instance segmentation and RAFT-Stereo depth
estimation to construct accurate 3D leaf representations,
upon which geometric scoring and neural refinement oper-
ate in parallel. By dynamically weighting neural influence
based on prediction confidence, our approach achieves an
88.0% success rate in controlled environments and 84.7% in
real greenhouse conditions, significantly outperforming both
purely geometric (75.3%) and purely neural (60.2%) meth-
ods.

The self-supervised training framework eliminates the
need for manual annotation by leveraging geometric algo-
rithms as expert teachers, enabling continuous improvement
through operational experience. Ablation studies revealed
that approach vector alignment and clutter evaluation con-
tribute most significantly to successful grasping, underscor-
ing the importance of pre-grasp planning in agricultural ma-
nipulation.

Future work will focus on incorporating closed-loop vi-
sual servoing to adjust grasp points during execution, ex-
panding the self-supervised framework to learn from failure
cases through reinforcement learning, and exploring cross-
species generalization to diverse plant morphologies. Ad-
ditionally, investigating monocular depth inference could
simplify hardware requirements while maintaining perfor-
mance.

This research demonstrates the efficacy of combining
model-driven and data-driven methods for complex agricul-
tural robotics challenges. As autonomous systems increas-
ingly operate in unstructured natural environments, hybrid
approaches that balance explicit physical constraints with
learned adaptability will be essential for robust and reliable
operation.
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